

KOGANEI

ACTUATORS GENERAL CATALOG

JIG CYLINDERS OF SERIES

CONTENTS

Features, Introductions ————————————————————————————————————	- 211
Handling Instructions and Precautions ————————————————————————————————————	- 213
Maximum Kinetic Energy ————————————————————————————————————	- 214
Spring Return Force	— 215
Cylinder Thrust ————————————————————————————————————	- 216
Standard Cylinders	
Double Acting Type, Single Acting Push Type, Single Acting Pull Type	
Specifications —	— 217
Order Codes —	- 218
Inner Construction and Major Parts	- 220
Dimensions —	
Double Rod Cylinders Double Acting Type	
Specifications —	— 237
Order Codes —	- 238
Inner Construction and Major Parts —	— 239
Dimensions —	
Mounting Screws for Jig Cylinders ————————————————————————————————————	— 245
Sensor Switches —	
Strong Magnetic Field Resistant Sensor Switch ——————	_ 249

JIG CYLINDERS J C SERIES

The New Jig Cylinder is now available in conformity with

368 mounting dimension standards!

Increased Durability

The scraper uses a one-piece rod seal, to prevent durability from decreasing due to dust intrusion. (from ϕ 40 [1.575in.] to φ 100 [3.940in.] only)

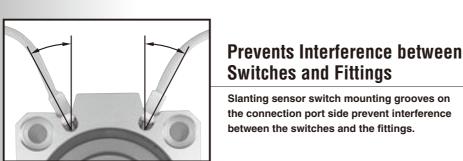
Optimum for Compact Devices!

Exhibits performance for clamping, pushing or lifting workpieces, and space-saving with its compact square body.

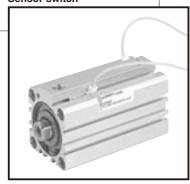
Standard Cylinder is compatible with Non-ion Specification

Avoidance of copper materials as standard specifications allows application in cathode-ray tube (CRT) and other similar manufacturing lines. (No filter plug supplied for the single acting type ϕ 50 [1.969in.].)

Now conforms to the JIS "1PS Cylinder" standards for mounting dimension. Offers flexible compatibility for actuator mounting standardization requirements in the automotive and machine tool industries, etc.


Two Types of Sensor Switches Available

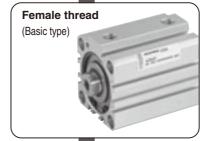
Select from 2 types of sensor switches, the ZE type sensor switch embedded in the body, or the ZD type sensor switch for strong magnetic field resistance to prevent erratic operation under harsh operating conditions (ϕ 20 [0.787in.] and ϕ 25 [0.984in.] offer ZE type only; a sensor switch is not available in the single acting pull type).



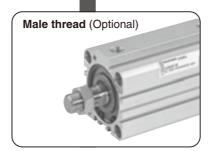
Sensor switch

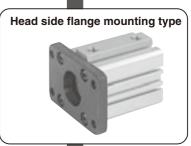
Switches and Fittings Slanting sensor switch mounting grooves on

the connection port side prevent interference between the switches and the fittings.

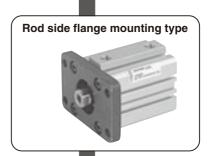

	Operation type					Rod en	d type	Mounting bracket					
	Double acting type		Single acting push type		Single acting pull type		Female thread	Male thread	Foot	Axial	Rod side	Head side	With
	No sensor	With sensor	No sensor	With sensor	No sensor	With sensor	i elliale tilleau	iviale lilleau		foot	flange	flange	mounting thread
Standard		•	•	•		_	•		•	•	•	•	•
Double rod	•		_	_	_	_	•	•	•			_	•

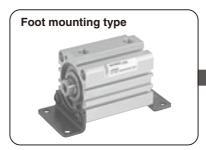
Operation type

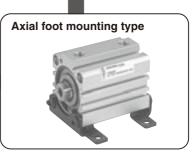




Standard cylinder single acting push type




Standard cylinder single acting pull type



Double rod cylinder double acting type

General precautions

Media

- Always thoroughly blow off (use compressed air) the tubing before piping. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.
- 2. Use air for the media. For use of any other media, consult us.
- **3.** Air used for the cylinder should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 μm) near the cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically. Collected liquid or dust entering the cylinder may cause improper operation.

Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent. Avoid using spindle oil or machine oil.

Atmosphere

If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.

Body mounting

- 1. The basic type includes 4 mounting through holes for hexagon socket head bolts. As an option, the mounting holes can be changed to double-sided thread. In sizes ϕ 20 [0.784in.] and ϕ 25 [0.984in.], however, the basic type includes both through mounting holes and mounting holes with double-sided threads located diagonally in each, and no option setting is available.
- 2. Some hexagon socket head bolts for direct mounting are provided for using the through mounting holes. See p.245, "Mounting Screws for Jig Cylinders." The nominal size of the hexagon socket head bolts for use in direct mounting are shown below.

Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
Nominal size	M5	M5	M5	M5	M6	M8	M10	M10

Bracket mounting

- Axial foot mounting type JCDA32×5, JCDA80×10, JCSA32×5 and JCTA32×5 are not available because of interference with the brackets.
- After purchasing the basic type cylinder in mounting type, the basic type cannot thereafter be changed to the foot mounting type, the axial foot mounting type, the flange mounting type, or with doublesided mounting thread type.
- After purchasing the cylinder with flange mounting bracket on the rod side, the flange mounting bracket cannot be assembled on the head side. The same goes for the reverse situation.

Lateral load, shock resistance

- When applying a load on the piston rod end, use a guide, etc., to ensure that it is not subjected to a lateral load.
- Install an external stopper, etc., to ensure that the cylinder is not subjected to direct impacts.

Tightening thread on the end of piston rod

Since a tool (thin wrench) has been prepared for holding the piston rod when tightening the rod end thread, consult us.

Non-standard stroke

•In most cases, body cutting is used for the manufacturing of non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 [0.472in.] $\sim \phi$ 40 [1.575in.], and strokes of less than 10mm for ϕ 50 [1.969in.] $\sim \phi$ 100 [3.940in.]. The collar packed is used for these cases. (All cylinders with magnet are designed as body cutting.)

Remark: For delivery, consult us.

- Dimensions
- Additional strokes obtained by body cutting remain classed as non-standard strokes.
- Additional strokes obtained by collar packed are classed as standard strokes in the longer one.

Sensor switch

In the Standard cylinder, a magnet for the sensor switch is not built-in. To install a sensor switch, a cylinder with a built-in magnet for the sensor switch is required.

- Notes: 1. For Handling Instructions and Precautions for Sensor Switches, see p.252.
 - For the sensor switch mounting location and moving ranges, see p.247, 251.
 - Contact protection measures are required for connecting inductive loads to reed sensor switches or when capacitive surges are generated. For contact protection measures, see p. 1566.

Maximum Kinetic Energy

The Jig Cylinders JC Series incorporates a cushion mechanism.

This mechanism is used for reducing impacts as much as possible when the piston with high kinetic energy stops at the end of stroke.

■ Rubber bumpers (as standard)

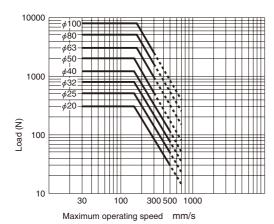
Rubber bumpers are installed on both sides of the piston to soften the impact at the end of stroke, absorbing impact noise during high cycle and high speed operations.

When using with rubber bumper, caution must be exercised that a certain rebound will occur at the end of stroke.

The kinetic energy of load can be found using the formula below.

 $E'x = \frac{W}{2g}v'^2$

Ex : Kinetic energy (J) m : Load mass (kg)


E'x: Kinetic energy [ft·lbf] W: Load [lbf.]

v: Piston speed (m/s) v': Piston speed [ft./sec.]

g : Acceleration of gravity 32.2 [ft./sec.2]

J[ft٠	lbf
----	-----	-----

Bore size mm [in.]	Maximum kinetic energy
20 [0.787]	0.27 [0.199]
25 [0.984]	0.40 [0.295]
32 [1.260]	0.65 [0.479]
40 [1.575]	1.20 [0.885]
50 [1.969]	2.00 [1.475]
63 [2.480]	3.40 [2.508]
80 [3.150]	5.90 [4.352]
100 [3.940]	9.90 [7.302]

1N = 0.2248 lbf. 1mm/s = 0.03937 in./sec.

● How to read the graph

The graph shows, when a load of 1000N [225lbf.] is carried by a ϕ 50 [1.969in.] Jig Cylinders JC Series, the rubber bumper performance requires that the maximum speed be restricted to 200mm/s [7.87in./sec.] or less.

Spring Return Force

											N [lbf.]
	Bore size mm [in.]	20 [0	.787]	25 [0	.984]	32 [1	.260]	40 [1	.575]	50 [1	.969]
Stroke mm Operation type		Zero stroke	End of stroke								
	5	18.3 [4.11]	21.2 [4.77]	24.0 [5.40]	28.4 [6.38]	33.7 [7.58]	39.4 [8.86]	41.1 [9.24]	47.5 [10.68]	_	_
	10	15.6 [3.51]	21.2 [4.77]	19.9 [4.47]	20.4 [0.00]	28.5 [6.41]	03.4 [0.00]	34.7 [7.80]	47.5 [10.00]	48.0 [10.79]	
	15	17.9 [4.02]		24.9 [5.60]		34.7 [7.80]		47.7 [10.72]		41.9 [9.42]	60.0 [13.49]
	20	16.8 [3.78]	04 4 [4 04]	22.9 [5.15]	30.7 [6.90]	33.0 [7.42]	39.2 [8.81]	45.6 [10.25]		35.8 [8.05]	
Single acting	25	15.7 [3.53]	21.4 [4.81]	20.0 [4.50]		31.3 [7.04]		43.5 [9.78]		50.5 [11.35]	
push type	30	14.5 [3.26]		18.9 [4.25]		29.3 [6.59]		41.4 [9.31]	E4 E [40 0E]	48.5 [10.90]	
	35	_	_	_	_	_	_	39.3 [8.83]	54.5 [12.25]	46.5 [10.45]	60 6 [12 60]
	40	_	_	_	_	_	_	37.2 [8.36]		44.5 [10.00]	60.6 [13.62]
	45	_	_	_	_	_	_	35.1 [7.89]		42.5 [9.55]	
	50	_	_	_	_	_	_	33.0 [7.42]		40.4 [9.08]	
Circula antina	5	26.5 [5.96]	5.9 [1.33]	26.5 [5.96]	5.9 [1.33]	42.2 [9.49]	00.6 [5.00]	42.2 [9.49]	00.6 [5.00]	_	_
Single acting pull type	10	27.5 [6.18]	6.9 [1.55]	27.5 [6.18]	6.9 [1.55]	41.2 [9.26]	22.6 [5.08]	41.2 [9.26]	22.6 [5.08]	00 4 [40 50]	00 5 [5 00]
pan type	20	_	_	_	_	_	_	_	_	82.4 [18.52]	23.5 [5.28]

Note: "Zero stroke" refers to a situation where a piston rod is in the fully retracted position, "end of stroke" refers to a situation where a piston rod is in the fully extended position.

Cylinder Thrust

Select a suitable cylinder bore size considering the load and air pressure to obtain the required thrust. Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio = $\frac{\text{Load}}{\text{Calculated value}}$) of 70% or less (50% or less for high speed).

Double acting type

					L				_				N [lbf.]
Bore size	Piston rod diameter	0	Pressure area				,	Air pressure	MPa [psi.]			
mm [in.]	mm [in.]	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
00 [0 707]	40 [0 00 4]	Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.12]	94.2 [21.18]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
20 [0.787]	10 [0.394]	Pull side	235.5 [0.365]	23.6 [5.31]	47.1 [10.59]	70.7 [15.89]	94.2 [21.18]	117.8 [26.48]	141.3 [31.76]	164.9 [37.07]	188.4 [42.35]	212.0 [47.66]	235.5 [52.94]
05 [0 004]	40 [0 470]	Push side	490.6 [0.760]	49.1 [11.04]	98.1 [22.05]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]
25 [0.984]	12 [0.472]	Pull side	377.6 [0.585]	37.8 [8.50]	75.5 [16.97]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
20 [4 060]	10 [0 000]	Push side	803.8 [1.246]	80.4 [18.07]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
32 [1.260]	16 [0.630]	Pull side	602.9 [0.934]	60.3 [13.56]	120.6 [27.11]	180.9 [40.67]	241.2 [54.22]	301.4 [67.75]	361.7 [81.31]	422.0 [94.87]	482.3 [108.4]	542.6 [122.0]	602.9 [135.5]
40 [4 575]	10.00.000	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
40 [1.575]	16 [0.630]	Pull side	1055.0 [1.635]	105.5 [23.72]	211.0 [47.43]	316.5 [71.15]	422.0 [94.87]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]	844.0 [189.7]	949.5 [213.4]	1055.0 [237.2]
E0 [4 000]	00 [0 707]	Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
50 [1.969]	20 [0.787]	Pull side	1648.5 [2.555]	164.9 [37.07]	329.7 [74.12]	494.6 [111.2]	659.4 [148.2]	824.3 [185.3]	989.1 [222.3]	1154.0 [259.4]	1318.8 [296.5]	1483.7 [333.5]	1648.5 [370.6]
60 [0 400]	00 [0 707]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
63 [2.480]	20 [0.787]	Pull side	2801.7 [4.343]	280.2 [62.99]	560.3 [126.0]	840.5 [188.9]	1120.7 [251.9]	1400.8 [314.9]	1681.0 [377.9]	1961.2 [440.9]	2241.3 [503.8]	2521.5 [566.8]	2801.7 [629.8]
00 [2 150]	05 [0 004]	Push side	5024.0 [7.787]	502.4 [112.9]	1004.8 [225.9]	1507.2 [338.8]	2009.6 [451.8]	2512.0 [564.7]	3014.4 [677.6]	3516.8 [790.6]	4019.2 [903.5]	4521.6 [1016.5]	5024.0 [1129.4]
80 [3.150]	25 [0.984]	Pull side	4533.4 [7.027]	453.3 [101.9]	906.7 [203.8]	1360.0 [305.7]	1813.4 [407.7]	2266.7 [509.6]	2720.0 [611.5]	3173.4 [713.4]	3626.7 [815.3]	4080.0 [917.2]	4533.4 [1019.1]
100 [2 040]	20 [1 101]	Push side	7850.0 [12.168]	785.0 [176.5]	1570.0 [352.9]	2355.0 [529.4]	3140.0 [705.9]	3925.0 [882.3]	4710.0 [1058.8]	5495.0 [1235.3]	6280.0 [1411.7]	7065.0 [1588.2]	7850.0 [1764.7]
100 [3.940]	30 [1.181]	Pull side	7143.5 [11.072]	714.4 [160.6]	1428.7 [321.2]	2143.1 [481.8]	2857.4 [642.3]	3571.8 [802.9]	4286.1 [963.5]	5000.5 [1124.1]	5714.8 [1284.7]	6429.2 [1445.3]	7143.5 [1605.9]

Note: For the thrust of double rod end cylinder, see the pull side of the thrust table.

● Single acting type

N [lbf.]

														i v [iioi.]
Operation	Bore size	Piston rod diameter	Pressure area	Stroke				Α	ir pressure	MPa [psi	i.]			
type	mm [in.]	mm [in.]	mm² [in?]	mm	0.1[15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
	20 [0.787]	10 [0.394]	314.0 [0.487]	5~10	1	41.6 [9.35]	73.0 [16.41]	104.4 [23.47]	135.8 [30.53]	167.2 [37.59]	198.6 [44.65]	230.0 [51.70]	261.4 [58.76]	292.8 [65.82]
	20 [0.767]	10 [0.334]	314.0 [0.407]	15~30	-	41.4 [9.31]	72.8 [16.37]	104.2 [23.42]	135.6 [30.48]	167.0 [37.54]	198.4 [44.60]	229.8 [51.66]	261.2 [58.72]	292.6 [65.78]
	25 [0.984]	12 [0.472]	490.6 [0.760]	5~10	-	69.7 [15.67]	118.8 [26.71]	167.9 [37.74]	216.9 [48.76]	266.0 [59.80]	315.0 [70.81]	364.1 [81.85]	413.2 [92.89]	462.2 [103.9]
	25 [0.504]	12 [0.472]	430.0 [0.700]	15~30	-	67.4 [15.15]	116.5 [26.19]	165.6 [37.23]	214.6 [48.24]	263.7 [59.28]	312.7 [70.29]	361.8 [81.33]	410.9 [92.37]	459.9 [103.4]
Single	32 [1.260]	16 [0 620]	803.8 [1.246]	5~10	41.0 [9.22]	121.4 [27.29]	201.8 [45.36]	282.1 [63.42]	362.5 [81.49]	442.9 [99.56]	523.3 [117.6]	603.7 [135.7]	684.1 [153.8]	764.4 [171.8]
acting push type	32 [1.200]	10 [0.030]	003.0 [1.240]	15~30	41.2 [9.26]	121.6 [27.34]	202.0 [45.41]	282.3 [63.46]	362.7 [81.53]	443.1 [99.61]	523.5 [117.7]	603.9 [135.8]	684.3 [153.8]	764.6 [171.9]
p	40 [1.575]	16 [0 620]	1256.0 [1.947]	5~10	78.1 [17.56]	203.7 [45.79]	329.3 [74.03]	454.9 [102.3]	580.5 [130.5]	706.1 [158.7]	831.7 [187.0]	957.3 [215.2]	1082.9 [243.4]	1280.5 [287.9]
	40 [1.575]	10 [0.030]	1250.0 [1.547]	15~50	71.1 [15.98]	196.7 [44.22]	322.3 [72.45]	447.9 [100.7]	573.5 [128.9]	699.1 [157.2]	824.7 [185.4]	950.3 [213.6]	1075.9 [241.9]	1201.5 [270.1]
	50 [1.969]	20 [0.787]	1060 5 [2 040]	10~15	136.3 [30.64]	332.5 [74.75]	528.8 [118.9]	725.0 [163.0]	921.3 [207.1]	1117.5 [251.2]	1313.8 [295.3]	1510.0 [339.4]	1706.3 [383.6]	1902.5 [427.7]
	50 [1.909]	20 [0.767]	1962.5 [3.042]	20~50	135.7 [30.51]	331.9 [74.61]	528.2 [118.7]	724.4 [162.8]	920.7 [207.0]	1116.9 [251.1]	1313.2 [295.2]	1509.4 [339.3]	1705.7 [383.4]	1901.9 [427.5]
	20 [0.787]	10 [0 204]	225 5 [0 265]	5	-	41.2 [9.26]	64.8 [14.57]	88.3 [19.85]	111.9 [25.16]	135.4 [30.44]	159.0 [35.74]	182.5 [41.03]	206.1 [46.33]	229.6 [51.61]
	20 [0.767]	10 [0.334]	200.0 [0.000]	10	_	40.2 [9.04]	63.8 [14.34]	87.3 [19.63]	110.9 [24.93]	134.4 [30.21]	158.0 [35.52]	181.5 [40.80]	205.1 [46.11]	228.6 [51.39]
Single	25 [0.984]	10 [0 470]	377.6 [0.585]	5	_	69.6 [15.65]	107.4 [24.14]	145.1 [32.62]	182.9 [41.12]	220.7 [49.61]	258.4 [58.09]	296.2 [66.59]	333.9 [75.06]	371.7 [83.56]
acting	25 [0.964]	12 [0.472]	377.0 [0.000]	10	-	68.6 [15.42]	106.4 [23.92]	144.1 [32.39]	181.9 [40.89]	219.7 [49.39]	257.4 [57.86]	295.2 [66.36]	332.9 [74.84]	370.7 [83.33]
pull type	32 [1.260]	16 [0.630]	602.9 [0.934]	5, 10	37.7 [8.47]	98.0 [22.03]	158.3 [35.59]	218.6 [49.14]	278.8 [62.67]	339.1 [76.23]	399.4 [89.79]	459.7 [103.3]	520.0 [116.9]	580.3 [130.5]
	40 [1.575]	16 [0.630]	1055.0 [1.635]	5, 10	82.9 [18.64]	188.4 [42.35]	293.9 [66.07]	399.4 [89.79]	504.9 [113.5]	610.4 [137.2]	715.9 [160.9]	821.4 [184.7]	926.9 [208.4]	1032.4 [232.1]
	50 [1.969]	20 [0.787]	1648.5 [2.555]	10, 20	141.4 [31.79]	306.2 [68.83]	471.1 [105.9]	635.9 [143.0]	800.8 [180.0]	965.6 [217.1]	1130.5 [254.1]	1295.3 [291.2]	1460.2 [328.3]	1625.0 [365.3]

JIG CYLINDERS JC SERIES

Standard Cylinders

Double Acting Type, Single Acting Push Type, Single Acting Pull Type


Symbols

■ Double acting type ■ Single acting push type ■ Single acting pull type

Specifications

	D									
Item	Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]	
Operation type		Double acting type, Single acting push type, Single acting pull type Double acting type								
Media		Air								
Mounting type		Basic	c type	Basic type, foo	ot type, axial foot	type, rod/head sid	de flange type, w	ith double-sided I	mounting thread	
Rod end specification				Fem	ale thread, ma	ale thread (opt	ional)			
	Double acting		0.1~1.0				0.05~1.0			
Operating pressure rangeNote1	type		[15~145]							
MPa [psi.]	Single acting	0.18~1.0		0.12~1.0			_			
	type	[26~	~145]		[17~145]					
Proof pressure	MPa [psi.]				1.5	[218]				
Operating temperature range	°C [°F]	$-10\sim70$ [14 ~158] (0 ~60 [32 ~140] for with sensor) ^{Note 2}								
Operating speed range mm/s [in./sec.]	Double acting type		30~500 [1.2~19.7]	30~300 [1.2~11.8]					
Operating speed range min/s [in:/sec.]	Single acting type		100~500	[3.9~19.7]			_			
Cushion					Rubber b	umper ^{Note 3}				
Lubrication		Not	t required (If I	ubrication is re	equired, use T	urbine Oil Cla	ss 1 (ISO VG	32) or equival	ent.)	
Port size		M5>	×0.8	Ro	Rc1/8 Rc			c1/4 Rc3/8		
Stroke tolerance	mm [in.]	1 +1 [+0.039]								
Applicable standards		JIS B 8368 1PS space-saving cylinder ^{Note 4}								

- Notes :1. While the minimum operating pressure is included, the breakaway pressure is not included.
 - 2. When using at temperature of $-10\sim$ 0°C [14 \sim 32°F], be careful to avoid freezing.
 - 3. Installed on the spring return side only for the single acting type. However, bumpers installed on both sides in the single acting pull type available in JCTA 40 and 50 only.
 - 4. This is only applicable to the basic mounting type in the standard double acting cylinder with magnet and sensor switch. Also includes the male rod thread specifications.

Bore Size and Stroke

			mr
Operation type	Bore size	Standard strokes	Maximum available stroke
	20	5 10 15 20 25 20 25 40 45 50 60 70	70
	25	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70	70
	32	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100	
Double acting type	40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 60, 90, 100	
Double acting type	50		100
	63	10 15 00 05 00 05 40 45 50 60 70 75 00 00 100	100
	80	10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100	
	100		
	20		
Single acting push	25	5, 10, 15, 20, 25, 30	30
type	32		
туре	40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	- 50
	50	10, 15, 20, 25, 30, 35, 40, 45, 50	30
	20		
	25	F 10	10
Single acting pull	32	5, 10	10
type	40		
	50	10, 20	20

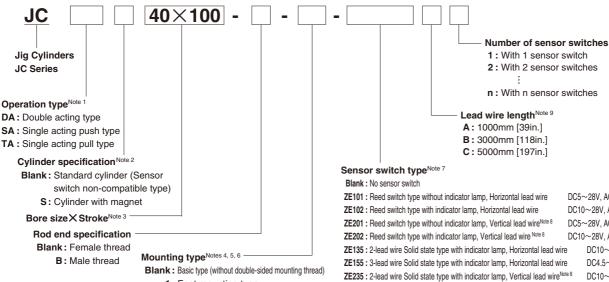
Remark: The non-standard stroke (see p.213) in increment of 1mm is set for double acting type only. Consult us about delivery. (For single acting type, consult us.)

DC5~28V, AC85~115V

DC10~28V, AC85~115V

DC5~28V, AC85~115V

DC10~28V, AC85~115V


DC10~28V

DC4 5~28V

DC10~28V

DC4 5~28V

Blank: Basic type (without double-sided mounting thread)

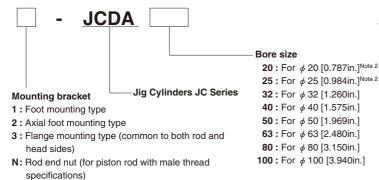
- 1: Foot mounting type
- 2: Axial foot mounting type
- 3: Rod side flange mounting type
- 5: Head side flange mounting type
- 13: With double-sided mounting thread

lead wire DC10~28V

ZD136: Strong magnetic field resistant sensor switch 2-lead wire Solid state type with indicator lamp, Horizontal

● For details of sensor switches, see p.246, 249.

ZE255 : 3-lead wire Solid state type with indicator lamp, Vertical lead wire Note 8

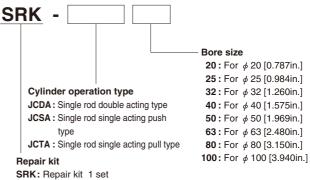

Notes: 1. Single acting type available for ϕ 20 [0.787in.] to ϕ 50 [1.969in.] only.

- 2. Sensor switch compatible single acting pull type is not available.
- 3. For the bore size and stroke, see p.217.
- 4. Mounting brackets are available for ϕ 32 [1.260in.] to ϕ 100 [3.940in.] only.
- 5. Axial foot mounting type JCDA, JCSA, JCTA32 X 5, and JCDA80 X 10 are not available because of brackets interference.
- 6. After purchasing the basic body type, it cannot thereafter be changed to the foot mounting type, the axial foot mounting type, the flange mounting type, or with double-sided mounting thread.
- 7. ZD136 is available only for ϕ 32 [1.260in.] to ϕ 100 [3.940in.].
- 8. The vertical lead wire type means the lead wire comes the sensor switch at perpendicular direction.
- 9. A and B are available with the ZE type only, C is with the ZD type only.

DC.

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification (excluding ϕ 20). For details, see p.1568.

Mounting bracket only Note 1



- Notes: 1. Purchased mounting brackets could not be installed to the product. Before ordering, always see and check p.213 "Bracket
 - 2. For ϕ 20 [0.787in.] and ϕ 25 [0.984in.], only N (rod end nut) is available

Mounting bracket contents

Model	Contents
1 - JCDA	Bracket:2 Mounting bolt:4
2 - JCDA	Bracket:2 Mounting bolt:4
3 - JCDA□	Bracket:1 Mounting bolt:4
N - JCDA□	Hexagon nut:1

Repair kit only

Contents of repair kit pc. JCDA Bore size mm 20 25 32 40 50 63 80 100 Parts 8 Rod seal 1 1 1 1 1 1 1 9 Piston seal 1 1 1 1 10 Tube gasket 1 1 1 2 2 2 2 2

	,	JCSA			JCTA							
20	25	32	40	50	20	25	32	40	50			
_			_	_	_	_		_	$\overline{}$			
1	1	1	1	1	1	1	1	1	1			
_	_	_	1	1	1	1	1	1	1			

Remark: Numbers ®, 9, 10 are part numbers on p.220.

Standard cylinders: Double acting type

g [oz.]

Bore size	Zero stroke mass	Additional mass for each	Additional	mass of mounting	ng bracket		Additional mass	of other options	
mm [in.]	(basic type)	1mm [0.0394in.] stroke	Foot bracket	Axial foot bracket	Flange bracket	Male thread piston rod	Cylinder with magnet	ZE . switch	ZD136 switch
20 [0.787]	57.8 [2.039]	2.42 [0.0854]	_	_	_	10 [0.35]	28.2 [0.995]		
25 [0.984]	77.3 [2.727]	3.19 [0.1125]	_	_	_	20 [0.71]	38.2 [1.347]		
32 [1.260]	99.7 [3.517]	4.08 [0.1439]	84 [2.96]	96 [3.39]	210 [7.41]	43 [1.52]	50.8 [1.792]		
40 [1.575]	175.6 [6.194]	4.83 [0.1704]	100 [3.53]	110 [3.88]	275 [9.70]	43 [1.52]	72.0 [2.540]	A:15 [0.53]	C:270 [9.52]
50 [1.969]	275.5 [9.718]	7.31 [0.2578]	150 [5.29]	160 [5.64]	415 [14.64]	74 [2.61]	109.3 [3.855]	B:35 [1.23]	0.270 [9.32]
63 [2.480]	436.6 [15.40]	8.56 [0.3019]	240 [8.47]	260 [9.17]	560 [19.75]	74 [2.61]	156.1 [5.506]		
80 [3.150]	874.6 [30.85]	13.71 [0.4836]	500 [17.64]	520 [18.34]	1515 [53.44]	162 [5.71]	247.0 [8.713]		
100 [3.940]	1553.5 [54.80]	18.86 [0.6653]	580 [20.46]	590 [20.81]	1950 [68.78]	291 [10.26]	360.3 [12.71]		

Notes: 1. The flange bracket is common to be used for the rod side and head side. Therefore, the same mass is applied for both.

- 2. "With double-sided mounting thread" has the same mass as the basic type.
- 3. Includes the mass for bracket mounting bolts, the rod end nut in the male thread specifications, and the sensor switch mounting brackets.
- 4. The sensor switch codes A, B, and C show the lead wire lengths. (A:1000mm [39in.], B:3000mm [118in.], C:5000mm [197in.])

Standard cylinders: Single acting push type

g [oz.]

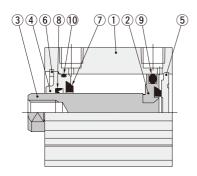
Stroke					Mass b	y stroke				
Bore size mm mm [in.]	5	10	15	20	25	30	35	40	45	50
20 [0.787]	72.5 [2.557]	84.6 [2.984]	112.1 [3.954]	124.2 [4.381]	136.3 [4.808]	148.4 [5.235]	_	_	_	_
25 [0.984]	100.7 [3.552]	116.6 [4.113]	155.9 [5.499]	171.8 [6.060]	187.8 [6.624]	203.7 [7.185]	_	_	_	_
32 [1.260]	135.0 [4.762]	155.4 [5.481]	213.6 [7.534]	234.0 [8.254]	254.4 [8.974]	274.8 [9.693]	_	_	_	_
40 [1.575]	220.5 [7.778]	244.6 [8.628]	342.6 [12.08]	366.8 [12.94]	390.9 [13.79]	415.1 [14.64]	439.2 [15.49]	463.4 [16.35]	487.5 [17.20]	511.7 [18.05]
50 [1.969]	_	368.9 [13.01]	511.6 [18.05]	548.2 [19.34]	584.7 [20.62]	621.3 [21.92]	657.8 [23.20]	694.4 [24.49]	730.9 [25.78]	767.5 [27.07]

Note: Additional mass for mounting brackets and other options is the same as for the double acting type.

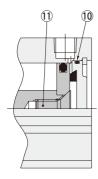
Standard cylinders: Single acting pull type g [oz.]

Stroke	Mass by stroke								
Bore size mm mm [in.]	5	10	20						
20 [0.787]	76.9 [2.713]	87.2 [3.076]	_						
25 [0.984]	106.4 [3.753]	120.6 [4.254]	_						
32 [1.260]	139.0 [4.903]	153.4 [5.411]	_						
40 [1.575]	224.7 [7.926]	242.7 [8.561]	_						
50 [1.969]		385.2 [13.59]	443.0 [15.63]						

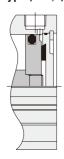
Note: Additional mass for mounting brackets and other options is the same as for the double acting type.

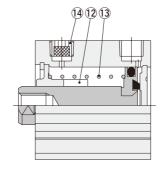

Calculation example: For the mass of a double acting type cylinder with magnet,

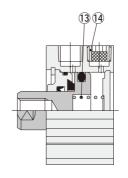
bore size of 25mm, stroke of 30mm, and with 2 sensor

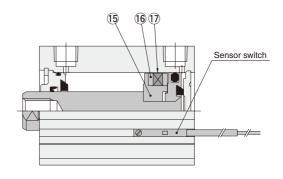

switches (ZE135A)

 $77.3+38.2+(3.19\times30)+(15\times2)=241.2g$ [8.508oz.]


• Double acting type ϕ 20, ϕ 25, ϕ 32 (JCDA)


• Double acting type ϕ 40, ϕ 50, ϕ 63 (JCDA)


• Double acting type ϕ 80, ϕ 100 (JCDA)


● Single acting push type (JCSA)

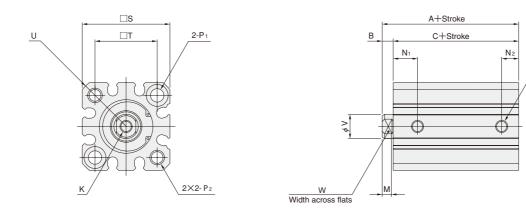
● Single acting pull type (JCTA)

Cylinder with magnet (JCDAS)

Major Parts and Materials

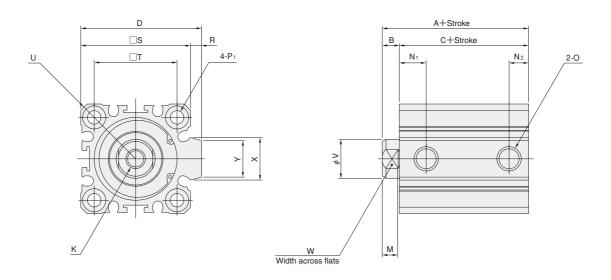
No.	Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]					
1	Cylinder body			Alumir	num all	oy (and	dized)							
2	Piston	Alum	inum a	ılloy (v	/ear-re	sistant	surfac	e treatr	nent)					
3	Piston rod ^{Note}	Stainle (chrome	ss steel plated)		Stee	el (chro	me pla	ted)						
4	Rod cover	Alum	inum a	ılloy (w	ear-re	sistant	surfac	e treatr	nent)					
(5)	Head cover													
6	Snap ring	ring Steel (black oxide finish)												
7	Bumper	Synthetic rubber (urethane rubber)												
8	Rod seal			Syntl	hetic ru	ıbber (İ	NBR)							
9	Piston seal			Syntl	hetic ru	ıbber (İ	NBR)							
10	Tube gasket			Syntl	hetic ru	ıbber (İ	NBR)							
11)	Piston setscrew				Steel (b	lack oxid	le finish)							
12	Spacer	Alu	minum	alloy (anodiz	ed)		_						
13	Spring		Р	ano wi	re			_						
14)	Filter plug	Plastic Mild steel (zinc plated) —												
15	Support			Alumir	num alle	oy (and	dized)							
16	Yoke		_	Mild steel (zinc plated)			_							
17														

Note: The material of the single acting pull type (ϕ 20 to ϕ 50) piston rod is stainless steel.

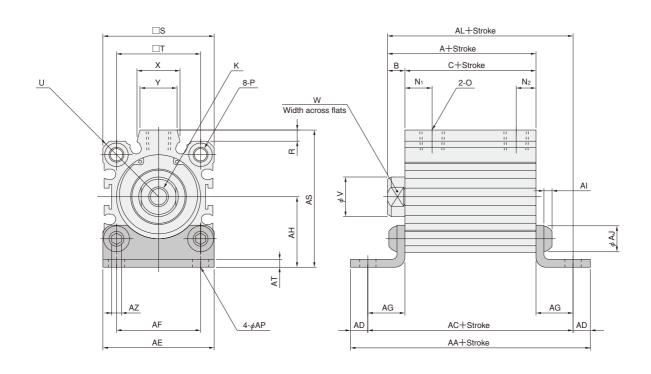

Seals

Bore size Parts mm [in.]	Rod seal	Piston seal	Tube gasket
20 [0.787]	MYN-10	PWP-20N	S-18
25 [0.984]	MYN-12	PWP-25N	S-22
32 [1.260]	MYN-16	PWP-32N	φ 29× φ 1.5
40 [1.575]	DRP-16	PWP-40N	φ 39.5× φ 1.5
50 [1.969]	DRP-20	PWP-50N	φ 49.5× φ 1.5
63 [2.480]	DRP-20	PWP-63N	φ 62.5× φ 1.5
80 [3.150]	DRP-25	PWP-80N	φ 77.3× φ 1.5
100 [3.940]	DRP-30	PWP-100N	φ 98.5× φ 2

Mounting Bracket Materials


Parts	Materials
Rod end nut (for male thread)	Steel (zinc plated)
Foot bracket	Mild steel (black zinc plated)
Axial foot bracket	Mild steel (black zinc plated)
Flange bracket	Mild steel (black oxide finish)
Bracket mounting bolt	Steel (black oxide finish)

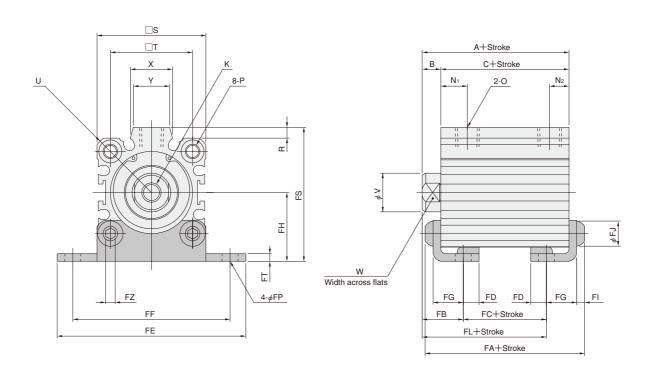
• Basic type JCDA Bore size \times Stroke (ϕ 20, ϕ 25)


2-0

• Basic type JCDA Bore size \times Stroke (ϕ 32 \sim ϕ 100)

Туре	Otariaai	d cylinder	(JCDA)	Cylinder w	ith magne	t (JCDAS)					JC	DA		JCDAS	
Stroke		В	С	Α	В	С	D	K	M		5	10 or	more	N ₁	N ₂
Bore Code mm [in.]	Α	В	C	A	В					N ₁	N ₂	N ₁	N 2	IN1	IN2
20 [0.787]	26	4.5	21.5	36	4.5	31.5	_	M5×0.8 Depth	7 4	9	6	10	7	10	7
25 [0.984]	27.5	5	22.5	37.5	5	32.5	_	M6×1 Depth	2 4.5	9	6	10	7	10	7
32 [1.260]	30	7	23	40	7	33	49.5	M8×1.25 Depth	3 6.5	10	6	11	8	11	8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	57	M8×1.25 Depth	6.5	10	10	11.5	11.5	11.5	11.5
50 [1.969]	38.5	8	30.5	48.5	8	40.5	71	M10×1.5 Depth	5 7		-	12	12	12	12
63 [2.480]	44	8	36	54	8	46	84	M10×1.5 Depth	5 7		_	14.5	14.5	14.5	14.5
80 [3.150]	53.5	10	43.5	63.5	10	53.5	104	M16×2 Depth	21 9		_	16.5	16.5	16.5	16.5
100 [3.940]	65	12	53	75	12	63	123.5	M20×2.5 Depth	27 11		_	21	21	21	21

Bore mm [in.]	0	P ₁		P ₂	R	s	т	U	V	w	х	Υ
20 [0.787]	M5×0.8	ϕ 5.5 (Through hole) Counterbore ϕ 9	Depth5.4 (Both sides)	M6×1 Depth10	_	36	25.5	R23.5	10	8	_	_
25 [0.984]	M5×0.8	ϕ 5.5 (Through hole) Counterbore ϕ 9	Depth5.4 (Both sides)	M6×1 Depth10	_	40	28	R26	12	10	_	_
32 [1.260]	Rc1/8	ϕ 5.5 (Through hole) Counterbore ϕ 9	Depth5.4 (Both sides)	_	4.5	45	34	R30	16	14	17.4	15
40 [1.575]	Rc1/8	ϕ 5.5 (Through hole) Counterbore ϕ 9	Depth5.4 (Both sides)	_	5	52	40	R34.5	16	14	20.5	17.5
50 [1.969]	Rc1/4	φ 6.6 (Through hole) Counterbore φ 11	Depth8 (Both sides)	_	7	64	50	R42.5	20	17	21.6	19
63 [2.480]	Rc1/4	φ 9 (Through hole) Counterbore φ 14	Depth10.5 (Both sides)	_	7	77	60	R51	20	17	21.6	19
80 [3.150]	Rc3/8	φ 11 (Through hole) Counterbore φ 17.5	Depth13.5 (Both sides)	_	6	98	77	R65	25	22	27.6	25
100 [3.940]	Rc3/8	φ 11 (Through hole) Counterbore φ 17.5	Depth13.5 (Both sides)	_	6.5	117	94	R78	30	27	27.6	25

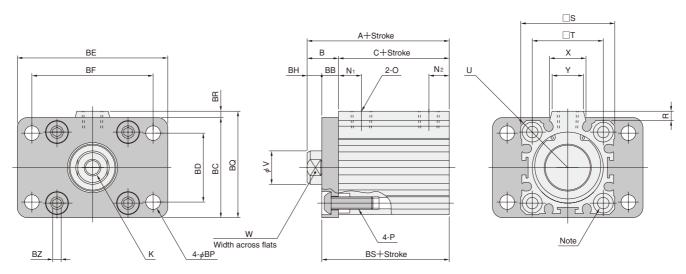


Туре	Standar	d cylinder	(JCDA)	Cylinder v	with magne	(JCDAS)			JC	DA		JCI	DAS	
Stroke	_	В	С	_	В	С	K	5		10 or more		N ₁	N ₂	0
Bore Code mm [in.]	Α	В		A	В			N ₁	N ₂	N ₁	N 2	IN1	IN2	
32 [1.260]	30	7	23	40	7	33	M8×1.25 Depth13	10	6	11	8	11	8	Rc1/8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5	Rc1/8
50 [1.969]	38.5	8	30.5	48.5	8	40.5	M10×1.5 Depth15	_	_	12	12	12	12	Rc1/4
63 [2.480]	44	8	36	54	8	46	M10×1.5 Depth15	_	_	14.5	14.5	14.5	14.5	Rc1/4
80 [3.150]	53.5	10	43.5	63.5	10	53.5	M16×2 Depth21	_	_	16.5	16.5	16.5	16.5	Rc3/8
100 [3.940]	65	12	53	75	12	63	M20×2.5 Depth27	_	_	21	21	21	21	Rc3/8

Туре	P	R	9	т		V	w	v	v	JCDA	JCDAS
Bore Code	F	n	3	•	0	٧	**	^	•	AA	AA
32 [1.260]	Counterbore	4.5	45	34	R30	16	14	17.4	15	67	77
40 [1.575]	Counterbore	5	52	40	R34.5	16	14	20.5	17.5	73.5	83.5
50 [1.969]	Counterbore	7	64	50	R42.5	20	17	21.6	19	84.5	94.5
63 [2.480]	Counterbore	7	77	60	R51	20	17	21.6	19	98	108
80 [3.150]	Counterbore	6	98	77	R65	25	22	27.6	25	121.5	131.5
100 [3.940]	Counterbore	6.5	117	94	R78	30	27	27.6	25	131	141

Туре	JCDA	JCDAS	AD	AE	AF	AG	AH	AI	AJ	JCDA	JCDAS	AP	46	AT	AZ
Bore Code mm [in.]	AC	AC	AD	AE	AF	AG	АП	AI	AJ	AL	AL	AP	AS	AI	AZ
32 [1.260]	53	63	7	45	34	15	28.5	4	10.5	45	55	6.6	55.5	3.2	4
40 [1.575]	59.5	69.5	7	53	40	15	32.5	4	10.5	51.5	61.5	6.6	63.5	3.2	4
50 [1.969]	66.5	76.5	9	64	50	18	38	5	14	56.5	66.5	9	77	3.2	5
63 [2.480]	76	86	11	77	60	20	44.5	6	17.5	64	74	11	90	3.2	6
80 [3.150]	93.5	103.5	14	100	77	25	58.5	7	21	78.5	88.5	14	113.5	4.5	8
100 [3.940]	103	113	14	117	94	25	67	7	21	90	100	14	132	4.5	8

lacktriangle Axial foot mounting type JCDA $\hfill \Box$ Bore size imes Stroke -2

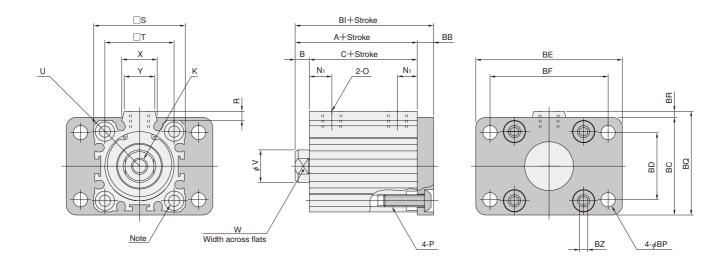

Туре	Otaridai	d cylinder	(JCDA)	Cylinder v	vith magnet	(JCDAS)			JC	DA		JCI	DAS	
Stroke	Α.	В	С	_	В	С	K		5	10 or	more	N ₁	N ₂	0
Bore Code mm [in.]	A	ь		Α	В			N 1	N ₂	N 1	N 2	IN1	IN2	
32 [1.260]	30	7	23	40	7	33	M8×1.25 Depth13	_	_	11	8	11	8	Rc1/8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5	Rc1/8
50 [1.969]	38.5	8	30.5	48.5	8	40.5	M10×1.5 Depth15	_	_	12	12	12	12	Rc1/4
63 [2.480]	44	8	36	54	8	46	M10×1.5 Depth15	_	_	14.5	14.5	14.5	14.5	Rc1/4
80 [3.150]	53.5	10	43.5	63.5	10	53.5	M16×2 Depth21	_	_	16.5	16.5	16.5	16.5	Rc3/8
100 [3.940]	65	12	53	75	12	63	M20×2.5 Depth27	_	_	21	21	21	21	Rc3/8

Туре	D	R	s	т		v	w	Y	>	JCDA	JCDAS	FB
Bore Code mm [in.]	r	n	3	•	U	•	VV	^	•	FA	FA	FB
32 [1.260]	Counterbore ϕ 9 Depth 5.4 (Both sides), M6X1 Depth from main body end 17.4 (Both sides)	4.5	45	34	R30	16	14	17.4	15	37.4	47.4	16.3
40 [1.575]	Counterbore ϕ 9 Depth 5.4 (Both sides), M6 \times 1 Depth from main body end 17.4 (Both sides)	5	52	40	R34.5	16	14	20.5	17.5	43.9	53.9	16.3
50 [1.969]	Counterbore \$\phi\$ 11 Depth 8 (Both sides), M 8 X 1.25 Depth from main body end 22 (Both sides)	7	64	50	R42.5	20	17	21.6	19	46.9	56.9	18.8
63 [2.480]	Counterbore ϕ 14 Depth10.5 (Both sides), M10 \times 1.5 Depth from main body end 28.5 (Both sides)	7	77	60	R51	20	17	21.6	19	54.4	64.4	20.3
80 [3.150]	Counterbore \$\phi\$ 17.5 Depth13.5 (Both sides), M12×1.75 Depth from main body end 35.5 (Both sides)	6	98	77	R65	25	22	27.6	25	66.5	76.5	26.5
100 [3.940]	Counterbore ϕ 17.5 Depth13.5 (Both sides), M12 \times 1.75 Depth from main body end 35.5 (Both sides)	6.5	117	94	R78	30	27	27.6	25	76	86	28.5

Туре	JCDA	JCDAS	- FD		FF	FG	FH	FI	FJ	JCDA	JCDAS	FP	F0	гт	F-7
Bore Code mm [in.]	FC	FC	FD	FE	FF	FG	гп	гі	FJ	FL	FL	ГР	FS	FT	FZ
32 [1.260]	4.4	14.4	6.5	78	65	12.5	28.5	4	10.5	20.7	30.7	6.6	55.5	3.2	4
40 [1.575]	10.9	20.9	6.5	87	73	12.5	32.5	4	10.5	27.2	37.2	6.6	63.5	3.2	4
50 [1.969]	8.9	18.9	8	103	87	14	38	5	14	27.7	37.7	9	77	3.2	5
63 [2.480]	11.4	21.4	9.5	127	109	15.5	44.5	6	17.5	31.7	41.7	11	90	3.2	6
80 [3.150]	10.5	20.5	11	145	123	21	58.5	7	21	37	47	14	113.5	4.5	8
100 [3.940]	20	30	11	159	137	21	67	7	21	48.5	58.5	14	132	4.5	8

Remark: The axial foot mounting type is not available for JCDA32 \times 5 and JCDA80 \times 10. (The brackets cause interference unless the stroke for ϕ 32 is 10mm or more, and for ϕ 80 the stroke is 15mm or more.)

● Rod side flange mounting type JCDA ☐ Bore size × Stroke -3

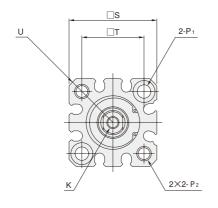


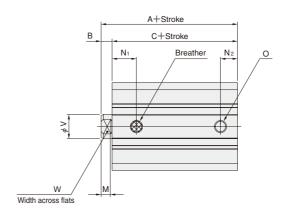
Note: The flange mounting brackets cannot be mounted on the head side because a tapped hole is not on the side.

Туре	Standar	d cylinder	(JCDA)	Cylinder v	vith magnet	(JCDAS)			JC	DA		JCI	DAS	
Stroke	Α	В	С		В	С	K		5	10 or	more	N ₁	N ₂	0
Bore Code mm [in.]	A	D		Α	D			N ₁	N 2	N ₁	N 2	IN1	IN2	
32 [1.260]	38	15	23	48	15	33	M8×1.25 Depth13	10	6	11	8	11	8	Rc1/8
40 [1.575]	46.5	17	29.5	56.5	17	39.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5	Rc1/8
50 [1.969]	48.5	18	30.5	58.5	18	40.5	M10×1.5 Depth15	_	_	12	12	12	12	Rc1/4
63 [2.480]	54	18	36	64	18	46	M10×1.5 Depth15	_	_	14.5	14.5	14.5	14.5	Rc1/4
80 [3.150]	69.5	26	43.5	79.5	26	53.5	M16×2 Depth21	_	_	16.5	16.5	16.5	16.5	Rc3/8
100 [3.940]	81	28	53	91	28	63	M20×2.5 Depth27	_	_	21	21	21	21	Rc3/8

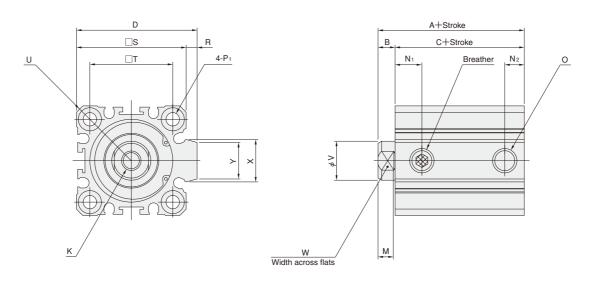
Bore Code mm [in.]	P	R	s	т	U	٧	w	х	Y	ВВ
32 [1.260]	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Rod side)	4.5	45	34	R30	16	14	17.4	15	8
40 [1.575]	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Rod side)	5	52	40	R34.5	16	14	20.5	17.5	10
50 [1.969]	Counterbore ϕ 11 Depth 8 (Both sides), M 8 \times 1.25 Depth from main body end 22 (Rod side)	7	64	50	R42.5	20	17	21.6	19	10
63 [2.480]	Counterbore ϕ 14 Depth10.5 (Both sides), M10 \times 1.5 Depth from main body end 28.5 (Rod side)	7	77	60	R51	20	17	21.6	19	10
80 [3.150]	Counterbore \$\phi\$ 17.5 Depth13.5 (Both sides), M12×1.75 Depth from main body end 35.5 (Rod side)	6	98	77	R65	25	22	27.6	25	16
100 [3.940]	Counterbore ϕ 17.5 Depth13.5 (Both sides), M12 \times 1.75 Depth from main body end 35.5 (Rod side)	6.5	117	94	R78	30	27	27.6	25	16

Type Bore Code mm [in.]	BC	BD	BE	BF	ВН	ВР	BQ	BR	JCDA BS	JCDAS BS	BZ
32 [1.260]	48	33	72	58	7	7	51	3	31	41	4
40 [1.575]	56	36	84	70	7	7	59	3	39.5	49.5	4
50 [1.969]	70	47	104	86	8	9	74	4	40.5	50.5	5
63 [2.480]	84	56	116	98	8	9	87.5	3.5	46	56	6
80 [3.150]	105	70	150	126	10	12	107.5	2.5	59.5	69.5	8
100 [3.940]	121	84	165	143	12	12	125.5	4.5	69	79	8

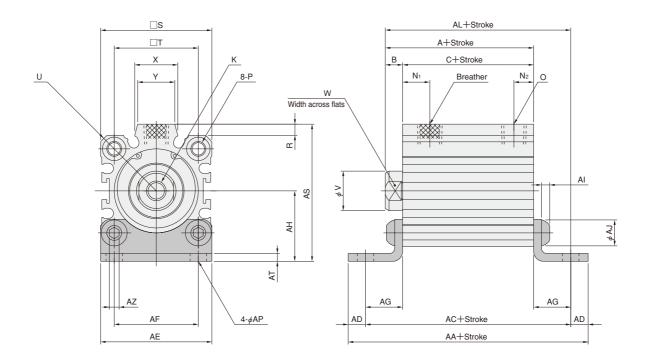

Note: The flange mounting brackets cannot be mounted on the rod side because a tapped hole is not on the side.


Туре	Otaridai	d cylinder	(JCDA)	Cylinder v	vith magnet	(JCDAS)			JC	DA		JC	DAS	
Stroke	Α	В	С	Α	В	С	K		5	10 or	more	N ₁	N ₂	0
Bore Code mm [in.]	A	ь		_ A	В			N 1	N ₂	N ₁	N 2	INI	IN2	
32 [1.260]	30	7	23	40	7	33	M8×1.25 Depth13	10	6	11	8	11	8	Rc1/8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5	Rc1/8
50 [1.969]	38.5	8	30.5	48.5	8	40.5	M10×1.5 Depth15	_	-	12	12	12	12	Rc1/4
63 [2.480]	44	8	36	54	8	46	M10×1.5 Depth15	_	-	14.5	14.5	14.5	14.5	Rc1/4
80 [3.150]	53.5	10	43.5	63.5	10	53.5	M16×2 Depth21	_	_	16.5	16.5	16.5	16.5	Rc3/8
100 [3.940]	65	12	53	75	12	63	M20×2.5 Depth27	_	_	21	21	21	21	Rc3/8

Bore Code mm [in.]	Р	R	s	т	U	v	w	x	Y	ВВ
32 [1.260]	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Head side)	4.5	45	34	R30	16	14	17.4	15	8
40 [1.575]	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Head side)	5	52	40	R34.5	16	14	20.5	17.5	10
50 [1.969]	Counterbore \$\phi\$ 11 Depth 8 (Both sides), M 8X1.25 Depth from main body end 22 (Head side)	7	64	50	R42.5	20	17	21.6	19	10
63 [2.480]	Counterbore \$\phi\$ 14 Depth10.5 (Both sides), M10X1.5 Depth from main body end 28.5 (Head side)	7	77	60	R51	20	17	21.6	19	10
80 [3.150]	Counterbore	6	98	77	R65	25	22	27.6	25	16
100 [3.940]	Counterbore	6.5	117	94	R78	30	27	27.6	25	16


Туре	ВС	BD	BE	BF	JCDA	JCDAS	ВР	BQ	BR	BZ
Bore Code	ь	55	DL		BI	BI	Di Di	20	Dit	DZ
32 [1.260]	48	33	72	58	38	48	7	51	3	4
40 [1.575]	56	36	84	70	46.5	56.5	7	59	3	4
50 [1.969]	70	47	104	86	48.5	58.5	9	74	4	5
63 [2.480]	84	56	116	98	54	64	9	87.5	3.5	6
80 [3.150]	105	70	150	126	69.5	79.5	12	107.5	2.5	8
100 [3.940]	121	84	165	143	81	91	12	125.5	4.5	8

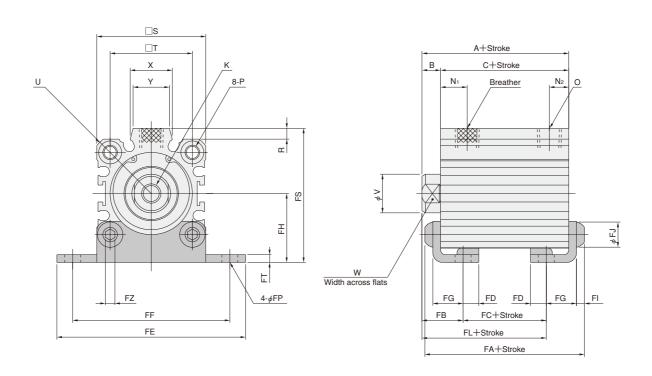
lacktriangle Basic type JCSA Bore size imes Stroke (ϕ 20, ϕ 25)


● Basic type JCSA Bore size \times Stroke (ϕ 32 \sim ϕ 50)

Туре		Stand	lard cyl	inder (J	CSA)		C	Cylinde	r with m	agnet (JCSAS	5)					JC	SA	
Stroke	5~10	(φ 50:10	0~20)	15~30 (ø	40:15~50, φ	50:25~50)	5~10	(φ 50:1	0~20)	15~30 (ø	10:15∼50, φ	50:25~50)	D	K	M		5	10 or	more
Bore Code mm [in.]	Α	В	С	Α	В	С	Α	В	С	Α	В	С				N 1	N 2	N ₁	N 2
20 [0.787]	26	4.5	21.5	31	4.5	26.5	36	4.5	31.5	41	4.5	36.5	_	M5×0.8 Depth7	4	9	6	10	7
25 [0.984]	27.5	5	22.5	32.5	5	27.5	37.5	5	32.5	42.5	5	37.5	_	M6×1 Depth12	4.5	9	6	10	7
32 [1.260]	30	7	23	40	7	33	40	7	33	50	7	43	49.5	M8×1.25 Depth13	6.5	10	6	11	8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	46.5	7	39.5	56.5	7	49.5	57	M8×1.25 Depth13	6.5	10	10	11.5	11.5
50 [1.969]	38.5	8	30.5	48.5	8	40.5	48.5	8	40.5	58.5	8	50.5	71	M10×1.5 Depth15	7	_	_	12	12

Туре	JCS	SAS	0	P 1	P 2	R	6	т	U	v	w	v	v
Bore Code	N 1	N 2		P 1	P 2	n	5	ı	U	V	VV	^	T
20 [0.787]	10	7	M5×0.8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	M6×1 Depth 10		36	25.5	R23.5	10	8	_	
25 [0.984]	10	7	M5×0.8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	M6×1 Depth 10		40	28	R26	12	10	_	—
32 [1.260]	11	8	Rc1/8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	_	4.5	45	34	R30	16	14	17.4	15
40 [1.575]	11.5	11.5	Rc1/8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	_	5	52	40	R34.5	16	14	20.5	17.5
50 [1.969]	12	12	Rc1/4	ϕ 6.6 (Through hole) Counterbore ϕ 11 Depth8 (Both sides)	_	7	64	50	R42.5	20	17	21.6	19

$\bullet \textbf{Foot mounting type} \quad \textbf{JCSA} \ \boxed{ \ \textbf{Bore size}} \ \times \ \boxed{\textbf{Stroke}} \ \textbf{-1}$


Туре		Stand	dard cyli	inder (J	CSA)		C	ylinde	with m	agnet (JCSAS	5)			JC	SA		JCS	SAS
Stroke	5-	~10 ^{Note}	e 1	15	~30 ^{No}	te 2	5	~10 ^{Note}	e 1	15	~30 ^{No}	te 2	K	:	5	10 or	more	NI.	NI.
Bore Code mm [in.]	Α	В	С	Α	В	С	Α	В	С	Α	В	С		N 1	N 2	N ₁	N 2	N ₁	N 2
32 [1.260]	30	7	23	40	7	33	40	7	33	50	7	43	M8×1.25 Depth13	10	6	11	8	11	8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	46.5	7	39.5	56.5	7	49.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5
50 [1.969]	38.5	8	30.5	48.5	8	40.5	48.5	8	40.5	58.5	8	50.5	M10×1.5 Depth15	_	_	12	12	12	12

Туре											JC	SA	JCS	SAS
Stroke	0	Р	R	S	Т	U	٧	W	Х	Υ	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}
Bore Code											AA	AA	AA	AA
32 [1.260]	Rc1/8	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	4.5	45	34	R30	16	14	17.4	15	67	77	77	87
40 [1.575]	Rc1/8	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Both sides)	5	52	40	R34.5	16	14	20.5	17.5	73.5	83.5	83.5	93.5
50 [1.969]	Rc1/4	Counterbore ϕ 11 Depth 8 (Both sides), M 8×1.25 Depth from main body end 22 (Both sides)	7	64	50	R42.5	20	17	21.6	19	84.5	94.5	94.5	104.5

Туре	00			SAS								JC	SA	JCS	SAS				
Stroke	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}	AD	AE	AF	AG	AH	ΑI	AJ	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}	AP	AS	ΑT	AZ
Bore Code mm [in.]	AC	AC	AC	AC								AL	AL	AL	AL				
32 [1.260]	53	63	63	73	7	45	34	15	28.5	4	10.5	45	55	55	65	6.6	55.5	3.2	4
40 [1.575]	59.5	69.5	69.5	79.5	7	53	40	15	32.5	4	10.5	51.5	61.5	61.5	71.5	6.6	63.5	3.2	4
50 [1.969]	66.5	76.5	76.5	86.5	9	64	50	18	38	5	14	56.5	66.5	66.5	76.5	9	77	3.2	5

Notes : 1. φ 50: 10~20. 2. φ 40: 15~50, φ 50: 25~50.

● Axial foot mounting type JCSA Bore size × Stroke -2

Туре		Stand	lard cyl	inder (J	ICSA)		C	ylinde	with m	agnet (JCSAS	5)			JC	SA		JCS	SAS
Stroke	5	~10 ^{Note}	e 1	15	~30 ^{No}	te 2	5′	~10 ^{Note}	e 1	15~30 ^{Note 2} A B C		K	;	5	10 or	more	N ₁	N ₂	
Bore Code mm [in.]	Α	В	С	Α	В	С	Α	В	С	Α	В	С		N ₁	N 2	N 1	N 2	IN1	IN2
32 [1.260]	30	7	23	40	7	33	40	7	33	50	7	43	M8×1.25 Depth13	_	_	11	8	11	8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	46.5	7	39.5	56.5	7	49.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5
50 [1.969]	38.5	8	30.5	48.5	8	40.5	48.5	8	40.5	58.5	8	50.5	M10×1.5 Depth15	_	_	12	12	12	12

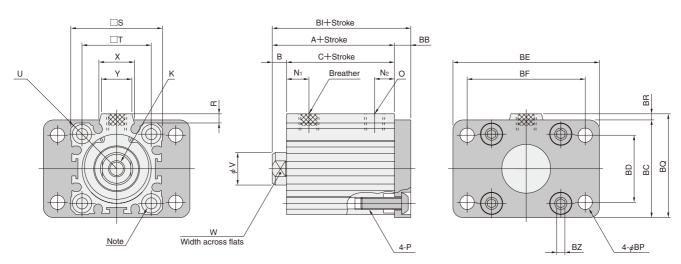
Туре											JC	SA	JCS	SAS
Stroke	0	P	R	S	Т	U	٧	W	Х	Υ	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}
Bore Code											FA	FA	FA	FA
32 [1.260]	Rc1/8	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Both sides)	4.5	45	34	R30	16	14	17.4	15	37.4	47.4	47.4	57.4
40 [1.575]	Rc1/8	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	5	52	40	R34.5	16	14	20.5	17.5	43.9	53.9	53.9	63.9
50 [1.969]	Rc1/4	Counterbore	7	64	50	R42.5	20	17	21.6	19	46.9	56.9	56.9	66.9

Туре		JC	SA	JCS	SAS								JC	SA	JCS	SAS				
Stroke	FB	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}	FD	FE	FF	FG	FH	FI	FJ	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}	FP	FS	FT	FZ
Bore Code mm [in.]		FC	FC	FC	FC								FL	FL	FL	FL				
32 [1.260]	16.3	4.4	14.4	14.4	24.4	6.5	78	65	12.5	28.5	4	10.5	20.7	30.7	30.7	40.7	6.6	55.5	3.2	4
40 [1.575]	16.3	10.9	20.9	20.9	30.9	6.5	87	73	12.5	32.5	4	10.5	27.2	37.2	37.2	47.2	6.6	63.5	3.2	4
50 [1.969]	18.8	8.9	18.9	18.9	28.9	8	103	87	14	38	5	14	27.7	37.7	37.7	47.7	9	77	3.2	5

Notes: 1. ϕ 50: 10 \sim 20. 2. ϕ 40: 15 \sim 50, ϕ 50: 25 \sim 50. Remark: Not available for **JCSA32** \times 5. (The mounting brackets cause interference unless the stroke is 10mm or more.)

 $\blacksquare \text{Rod side flange mounting type} \quad \textbf{JCSA} \quad \boxed{ \text{Bore size}} \times \boxed{ \text{Stroke}} \text{-3}$

Note: The flange mounting brackets cannot be mounted on the head side because a tapped hole is not on the side.


Туре		Stand	dard cyli	inder (J	CSA)		C	ylinde	with m	agnet (JCSAS	5)			JC	SA		JCS	SAS
Stroke	5-	~10 ^{Note}	e 1	15	~30 ^{No}	te 2	5	5~10 ^{Note 1} A B C		15	~30 ^{No}	te 2	K	:	5	10 or	more	N ₁	N ₂
Bore Code mm [in.]	Α	В	С	Α	В	С	Α	В	С	Α	В	С		N 1	N 2	N 1	N 2	IN1	IN2
32 [1.260]	38	7	23	48	7	33	48	7	33	58	7	43	M8×1.25 Depth13	10	6	11	8	11	8
40 [1.575]	46.5	7	29.5	56.5	7	39.5	56.5	7	39.5	66.5	7	49.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5
50 [1.969]	48.5	8	30.5	58.5	8	40.5	58.5	8	40.5	68.5	8	50.5	M10×1.5 Depth15	_	_	12	12	12	12

Bore Code mm [in.]	0	P	R	s	Т	U	٧	W	Х	Υ	ВВ
32 [1.260]	Rc1/8	Counterbore \$\phi\$ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Rod side)	4.5	45	34	R30	16	14	17.4	15	8
40 [1.575]	Rc1/8	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Rod side)	5	52	40	R34.5	16	14	20.5	17.5	10
50 [1.969]	Rc1/4	Counterbore \$\dphi\$ 11 Depth 8 (Both sides), M8X1.25 Depth from main body end 22 (Rod side)	7	64	50	R42.5	20	17	21.6	19	10

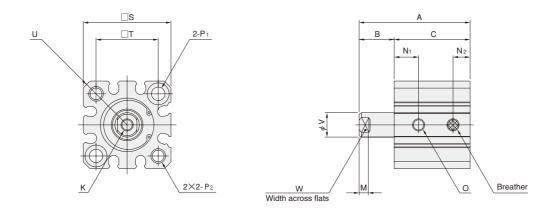
Туре									JC	SA	JCS	SAS	
Stroke	BC	BD	BE	BF	вн	BP	BQ	BR	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}	BZ
Bore Code mm [in.]									BS	BS	BS	BS	
32 [1.260]	48	33	72	58	7	7	51	3	31	41	41	51	4
40 [1.575]	56	36	84	70	7	7	59	3	39.5	49.5	49.5	59.5	4
50 [1.969]	70	47	104	86	8	9	74	4	40.5	50.5	50.5	60.5	5

Notes: 1. ϕ 50: 10~20. 2. ϕ 40: 15~50, ϕ 50: 25~50.

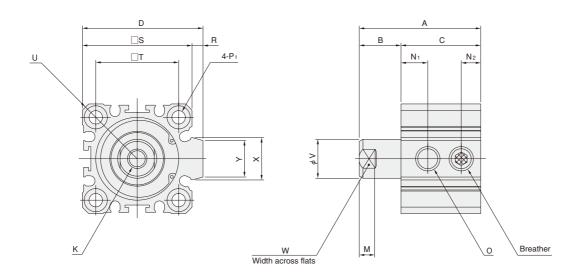
● Head side flange mounting type JCSA Bore size × Stroke -5

Note: The flange mounting brackets cannot be mounted on the rod side because a tapped hole is not on the side.

Туре		Stand	dard cyl	inder (J	CSA)		C	Cylinde	r with m	agnet (JCSAS	5)			JC	SA		JCS	SAS
Stroke	5-	~10 ^{Note}	e 1	15	~30 ^{No}	te 2	5′	5~10 ^{Note 1} A B C		15	~30 ^{No}	te 2	K	;	5	10 or	more	N ₁	N ₂
Bore Code	Α	В	С	Α	В	С	Α	В	С	Α	В	С		N ₁	N 2	N 1	N 2	IN1	IN2
32 [1.260]	30	7	23	40	7	33	40	7	33	50	7	43	M8×1.25 Depth13	10	6	11	8	11	8
40 [1.575]	36.5	7	29.5	46.5	7	39.5	46.5	7	39.5	56.5	7	49.5	M8×1.25 Depth13	10	10	11.5	11.5	11.5	11.5
50 [1.969]	38.5	8	30.5	48.5	8	40.5	48.5	8	40.5	58.5	8	50.5	M10×1.5 Depth15	_	_	12	12	12	12

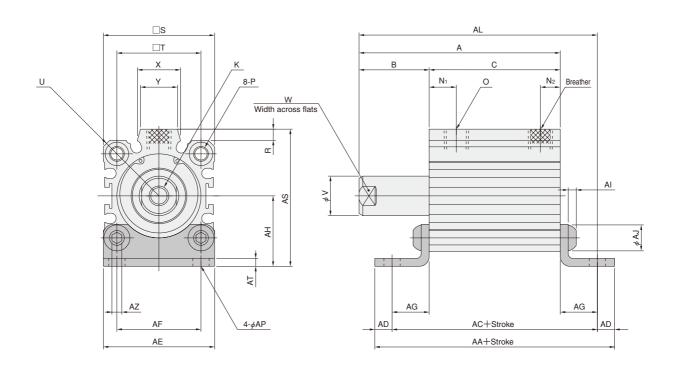

Bore Code mm [in.]	0	P	R	s	т	U	V	w	х	Υ	ВВ	вс	BD
32 [1.260]	Rc1/8	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Head side)	4.5	45	34	R30	16	14	17.4	15	8	48	33
40 [1.575]	Rc1/8	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Head side)	5	52	40	R34.5	16	14	20.5	17.5	10	56	36
50 [1.969]	Rc1/4	Counterbore ϕ 11 Depth 8 (Both sides), M 8 \times 1.25 Depth from main body end 22 (Head side)	7	64	50	R42.5	20	17	21.6	19	10	70	47

Туре			JC	SA	JC	SAS				
Stroke	BE	BF	5~10 ^{Note 1}	15~30 ^{Note 2}	5~10 ^{Note 1}	15~30 ^{Note 2}	BP	BQ	BR	BZ
Bore Code mm [in.]			BI	BI	BI	BI				
32 [1.260]	72	58	38	48	48	58	7	51	3	4
40 [1.575]	84	70	46.5	56.5	56.5	66.5	7	59	3	4
50 [1.969]	104	88	48.5	58.5	58.5	68.5	9	74	4	5


Notes: 1. ϕ 50: 10~20. 2. ϕ 40: 15~50, ϕ 50: 25~50.

Dimensions of Standard Cylinder Single Acting Pull Type (mm)

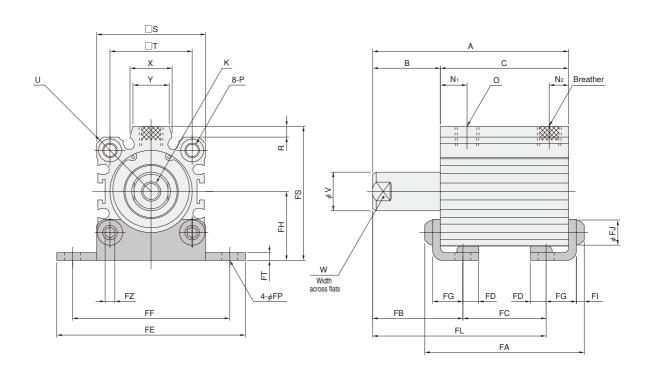
• Basic type JCTA Bore size \times Stroke (ϕ 20, ϕ 25)


• Basic type JCTA Bore size \times Stroke (ϕ 32 \sim ϕ 50)

Stroke		5			10			20		D	К	М		5	10 or	more
Bore Code	Α	В	С	Α	В	С	Α	В	С	ט	, ,	IVI	N ₁	N ₂	N ₁	N 2
20 [0.787]	36	9.5	26.5	46	14.5	31.5	_	_	_	_	M5×0.8 Depth	4	9	6	10	7
25 [0.984]	37.5	10	27.5	47.5	15	32.5	_	_	_	_	M6×1 Depth	2 4.5	9	6	10	7
32 [1.260]	40	12	28	50	17	33	_	_	_	49.5	M8×1.25 Depth	3 6.5	10	6	11	8
40 [1.575]	46.5	12	34.5	56.5	17	39.5	_	_	_	57	M8×1.25 Depth	3 6.5	10	10	11.5	11.5
50 [1.969]	_	_	_	58.5	18	40.5	78.5	28	50.5	71	M10×1.5 Depth	5 7	_	_	12	12

Bore Code mm [in.]	0	P ₁	P ₂	R	s	т	U	V	w	х	Υ
20 [0.787]	M5×0.8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	M6×1 Depth10	_	36	25.5	R23.5	10	8	_	_
25 [0.984]	M5×0.8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	M6×1 Depth10	_	40	28	R26	12	10	_	_
32 [1.260]	Rc1/8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	_	4.5	45	34	R30	16	14	17.4	15
40 [1.575]	Rc1/8	ϕ 5.5 (Through hole) Counterbore ϕ 9 Depth5.4 (Both sides)	_	5	52	40	R34.5	16	14	20.5	17.5
50 [1.969]	Rc1/4	ϕ 6.6 (Through hole) Counterbore ϕ 11 Depth 8 (Both sides)	_	7	64	50	R42.5	20	17	21.6	19

● Foot mounting type JCTA Bore size × Stroke -1

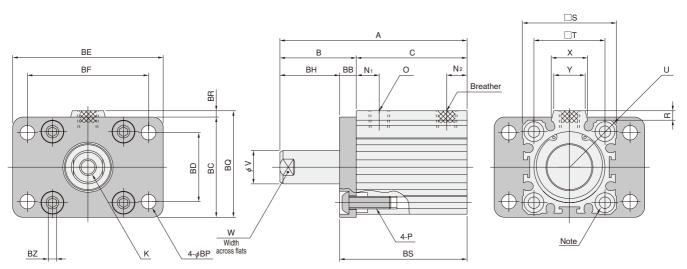


Stroke		5			10			20		V	į	5	10 or	more	0
Bore Code	Α	В	С	Α	В	С	Α	В	С	K	N 1	N 2	N 1	N 2	
32 [1.260]	40	12	28	50	17	33	_	_	_	M8×1.25 Depth13	10	6	11	8	Rc1/8
40 [1.575]	46.5	12	34.5	56.5	17	39.5	_	_	_	M8×1.25 Depth13	10	10	11.5	11.5	Rc1/8
50 [1.969]	_	_	_	58.5	18	40.5	78.5	28	50.5	M10×1.5 Depth15	_	_	12	12	Rc1/4

Stroke	В	R		т		v	w	v	v	5	10	20	5	10	20
Bore Code	F	n	3	•	U	v	VV	^	ĭ	AA	AA	AA	AC	AC	AC
32 [1.260]	Counterbore \$\phi\$ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	4.5	45	34	R30	16	14	17.4	15	72	77	_	58	63	
40 [1.575]	Counterbore \$\phi\$ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	5	52	40	R34.5	16	14	20.5	17.5	78.5	83.5		64.5	69.5	
50 [1.969]	Counterbore \$\dphi\$ 11 Depth 8 (Both sides), M 8×1.25 Depth from main body end 22 (Both sides)	7	64	50	R42.5	20	17	21.6	19	l	94.5	104.5	_	76.5	86.5

Stroke	۸D	AE	AF	AG	AH	Al	AJ	5	10	20	AP	AS	AT	AZ
Bore Code	AD	AL	AF	AG	АП	AI	AJ	AL	AL	AL	AF	AS	AI	AZ
32 [1.260]	7	45	34	15	28.5	4	10.5	55	65	_	6.6	55.5	3.2	4
40 [1.575]	7	53	40	15	32.5	4	10.5	61.5	71.5	_	6.6	63.5	3.2	4
50 [1.969]	9	64	50	18	38	5	14	_	76.5	96.5	9	77	3.2	5

● Axial foot mounting type JCTA Bore size × Stroke -2

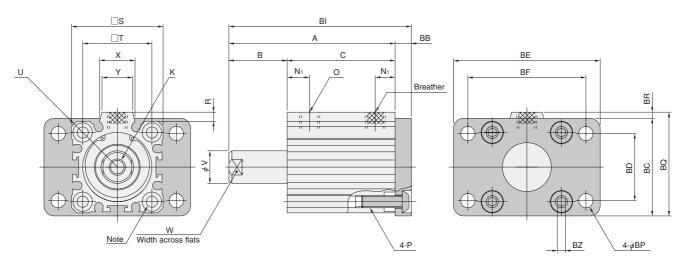

Stroke		5			10			20		V	į	5	10 or	more	0
Bore Code	Α	В	С	Α	В	С	Α	В	С	K	N 1	N ₂	N ₁	N ₂	
32 [1.260]	_	_	_	50	17	33	_	_	_	M8×1.25 Depth13	_	-	11	8	Rc1/8
40 [1.575]	46.5	12	34.5	56.5	17	39.5	_	_	_	M8×1.25 Depth13	10	10	11.5	11.5	Rc1/8
50 [1.969]	_	_	_	58.5	18	40.5	78.5	28	50.5	M10×1.5 Depth15	_	_	12	12	Rc1/4

Stroke	D.	В	6	т	-	v	w	v	v	5	10	20	5	10	20
Bore Code mm [in.]	F	n	0	'	U	V	VV	^	T	FA	FA	FA	FB	FB	FB
32 [1.260]	Counterbore \$\phi 9\$ Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	4.5	45	34	R30	16	14	17.4	15	_	47.4	_	_	26.5	
40 [1.575]	Counterbore \$\phi 9\$ Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	5	52	40	R34.5	16	14	20.5	17.5	48.9	53.9	_	21.5	26.5	
50 [1.969]	Counterbore	7	64	50	R42.5	20	17	21.6	19	_	56.9	66.9	_	29	39

Stroke	5	10	20	FD	FE	FF	FG	FH	FI	FJ	5	10	20	FP	FS	FT	FZ
Bore Code	FC	FC	FC	FD	FE	FF	ru	гп		FJ	FL	FL	FL	FF	гэ	Г	FZ.
32 [1.260]	_	14.4	_	6.5	78	65	12.5	28.5	4	10.5	_	40.7	_	6.6	55.5	3.2	4
40 [1.575]	15.9	20.9	_	6.5	87	73	12.5	32.5	4	10.5	37.2	47.2	_	6.6	63.5	3.2	4
50 [1.969]	_	18.9	28.9	8	103	87	14	38	5	14	_	47.7	67.7	9	77	3.2	5

 $Remark: Not \ available \ for \ \textbf{JCTA32} \times \textbf{5}. \ (The \ mounting \ brackets \ cause \ interference \ unless \ the \ stroke \ is \ 10mm \ or \ more.)$

● Rod side flange mounting type JCTA Bore size × Stroke -3

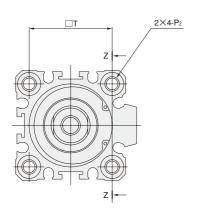

Note: The flange mounting brackets cannot be mounted on the head side because a tapped hole is not on the side.

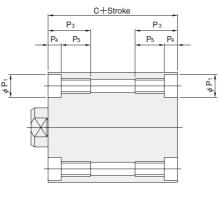
Stroke		5			10			20		V		5	10 or	more	0
Bore Code mm [in.]	Α	В	С	Α	В	С	Α	В	С	K	N 1	N ₂	N 1	N ₂	
32 [1.260]	48	20	28	58	25	33	_	_	_	M8×1.25 Depth13	10	6	11	8	Rc1/8
40 [1.575]	56.5	22	34.5	66.5	27	39.5	_	_	_	M8×1.25 Depth13	10	10	11.5	11.5	Rc1/8
50 [1.969]	_	_	_	68.5	28	40.5	88.5	38	50.5	M10×1.5 Depth15	_	_	12	12	Rc1/4

Bore Code	P	R	S	T	U	V	W	Х	Υ	BB	ВС	BD
32 [1.260]	Counterbore \$\phi 9\$ Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Rod side surface)	4.5	45	34	R30	16	14	17.4	15	8	48	33
40 [1.575]	Counterbore	5	52	40	R34.5	16	14	20.5	17.5	10	56	36
50 [1.969]	Counterbore	7	64	50	R42.5	20	17	21.6	19	10	70	47

Stroke	BE	BF	5	10	20	ВР	BQ	BR	5	10	20	BZ
Bore Code mm [in.]	DE	БГ	ВН	ВН	ВН	Dr	DQ.	DN	BS	BS	BS	DZ
32 [1.260]	72	58	12	17	_	7	51	3	36	41	_	4
40 [1.575]	84	70	12	17	_	7	59	3	44.5	49.5	_	4
50 [1.969]	104	86	_	18	28	9	74	4	_	50.5	60.5	5

Note: The flange mounting brackets cannot be mounted on the rod side because a tapped hole is not on the side.


Stroke		5			10			20		V	Ę	5	10 or	more	0
Bore Code mm [in.]	Α	В	С	Α	В	С	Α	В	С	K	N 1	N ₂	N 1	N 2	
32 [1.260]	40	12	28	50	17	33	_	_	_	M8×1.25 Depth13	10	6	11	8	Rc1/8
40 [1.575]	46.5	12	34.5	56.5	17	39.5	_	_	_	M8×1.25 Depth13	10	10	11.5	11.5	Rc1/8
50 [1.969]	_	_	_	58.5	18	40.5	78.5	28	50.5	M10×1.5 Depth15	-	_	12	12	Rc1/4


Bore Code mm [in.]	Р	R	S	Т	U	٧	W	Х	Υ	BB	ВС
32 [1.260]	Counterbore \$\phi\$ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Head side)	4.5	45	34	R30	16	14	17.4	15	8	48
40 [1.575]	Counterbore \$\phi\$ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Head side)	5	52	40	R34.5	16	14	20.5	17.5	10	56
50 [1.969]	Counterbore \$ 11 Depth 8 (Both sides), M 8 X 1.25 Depth from main body end 22 (Head side)	7	64	50	R42.5	20	17	21.6	19	10	70

Stroke	BD	BE	BF	5	10	20	ВР	BQ	BR	BZ
Bore Code mm [in.]	БО	BE	БГ	BI	BI	BI	БР	ВQ	DN	DZ.
32 [1.260]	33	72	58	48	58	_	7	51	3	4
40 [1.575]	36	84	70	56.5	66.5	_	7	59	3	4
50 [1.969]	47	104	86	_	68.5	88.5	9	74	4	5

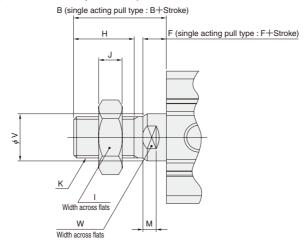
With Double-sided Mounting Thread Dimensions (mm)

- Double acting type, Single acting push type, Single acting pull type JCDA ___, JCSA ___, JCTA Bore size × Stroke -13
- $\bullet \phi$ 32 $\sim \phi$ 100 (single acting type is available up to ϕ 50.)

Z-Z cross section

Bore Code mm [in.]	P 1	P ₂	P 3	P ₄	P ₅ Note	Т
32 [1.260]	9	M6×1	17.4	5.4	12	34
40 [1.575]	9	M6×1	17.4	5.4	12	40
50 [1.969]	11	M8×1.25	22	8	14	50
63 [2.480]	14	M10×1.5	28.5	10.5	18	60
80 [3.150]	17.5	M12×1.75	35.5	13.5	22	77
100 [3.940]	17.5	M12×1.75	35.5	13.5	22	94

Note: When "C + Stroke" is less than the values shown below, the through thread is used.


Code Bore mm [in.]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
C+Stroke	38	39.5	45.5	61	73.5	73

- For dimensions not shown in this diagram, see the Standard Cylinder Basic Type.
- The single acting type is available up to ϕ 50.

Dimensions of Male Rod End Thread Specification (mm)

● Double acting type, Single acting push type, Single acting pull type JCDA __, JCSA __, JCTA Bore size × Stroke -B

 $\bullet \phi 20 \sim \phi 100$ (single acting type is available up to $\phi 50$.)

Bore Code	В	F	Н	I	J	K	М	V	W
20 [0.787]	18.5	4.5	12	13	5	M8×1.25	4	10	8
25 [0.984]	22.5	5	15	17	6	M10×1.25	4.5	12	10
32 [1.260]	28.5	5	20.5	22	8	M14×1.5	4.5	16	14
40 [1.575]	28.5	5	20.5	22	8	M14×1.5	4.5	16	14
50 [1.969]	33.5	5	25.5	24	11	M18×1.5	4	20	17
63 [2.480]	33.5	5	25.5	24	11	M18×1.5	4	20	17
80 [3.150]	43.5	8	32.5	30	13	M22×1.5	7	25	22
100 [3.940]	43.5	8	32.5	41	16	M26×1.5	7	30	27

The single acting type is available up to ϕ 50.

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

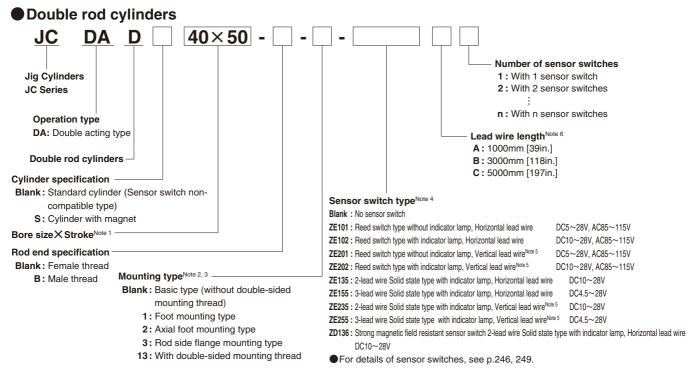
JIG CYLINDERS JC SERIES

Double Rod Cylinders Double Acting Type

Symbol

Double acting type

Specifications


Item	Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
Operation type					Double a	cting type			
Media					А	ir			
Mounting type		Basic	c type	Basic type, foo	t type, axial foot	type, rod side f	lange type, with	double-sided n	nounting thread
Rod end specification		Female thread, male thread (optional)							
Operating pressure range ^{Note 1}	MPa [psi.]	0.1~1.0 [15~145]			0.05~1.0 [7~145]				
Proof pressure	MPa [psi.]				1.5 [[218]			
Operating temperature range	°C [°F]		_	10~70 [14~	·158] (0~60 [32~140] for	with sensor)No	ote ²	
Operating speed range	mm/s [in./sec.]		30~500 [1.2~19.7]			30~300 [1.2~11.8]	
Cushion					Rubber	bumper			
Lubrication		Not	required (If Iu	brication is re	quired, use Ti	urbine Oil Cla	ss 1 (ISO VG	32) or equivale	ent.)
Port size		M5×0.8 Rc1/8 Rc1/4						Rc	3/8
Stroke tolerance	mm [in.]				+1 [+	0.039			

Notes: 1. While the minimum operating pressure is included, the breakaway pressure is not included. 2. When using at temperature of $-10\sim$ 0°C [14 \sim 32°F], be careful to avoid freezing.

Bore Size and Stroke

		Ţ.			
Bore size	Standard strokes	Maximum available stroke			
20	F 10 1F 00 0F 20	20			
25	5, 10, 15, 20, 25, 30	30			
32	E 10 15 00 05 00 05 40 45 50				
40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50				
50		-			
63	10 15 00 05 00 05 10 15 50	50			
80	10, 15, 20, 25, 30, 35, 40, 45, 50				
100					

Remark: The non-standard stroke (see p.213.) is set in increments of 1mm only. Consult us about delivery.

Notes: 1. For the bore size and stroke, see p.237.

- 2. Mounting brackets are available for ϕ 32 [1.260in.] to ϕ 100 [3.940in.] only.
- 3. After purchasing the basic body type, it cannot thereafter be changed to the foot mounting type, the axial foot mounting type, the flange mounting type, or with double-sided mounting thread.
- 4. ZD136 is available only for ϕ 32 [1.260in.] to ϕ 100 [3.940in.].
- 5. The vertical lead wire type means the lead wire comes the sensor switch at perpendicular direction.
- 6. A and B are available with the ZE type only, C is with the ZD type only.

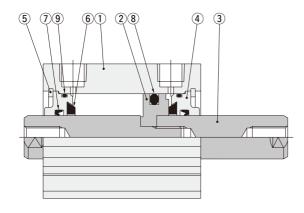
Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification (excluding \$\phi\$ 20). For details, see p.1568.

Notes: 1. Purchased mounting brackets could not be installed to the product. Before ordering, always see and check p.213 "Bracket mounting."

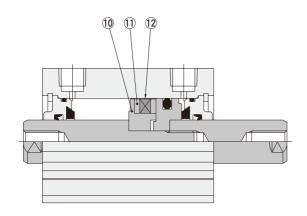
2. For ϕ 20 [0.787in.] and ϕ 25 [0.984in.], only N (rod end nut) is available.

Mounting bracket contents

Model	Contents
1 - JCDA	Bracket:2 Mounting bolt:4
2 - JCDA	Bracket:2 Mounting bolt:4
3 - JCDA	Bracket:1 Mounting bolt:4
N - JCDA	Hexagon nut:1


Contents of repair kit

- Contents of Tepair Ki	pc.
Operation type Bore size	JCDAD
Parts mm [in.]	20~100 [0.787~3.940]
⑦Rod seal	2
®Piston seal	1
Tube gasket	2


Remark: 7, 8, 9 are part numbers on p.239.

Inner Construction

Double acting type (JCDAD)

Cylinder with magnet (JCDADS)

Major Parts and Materials

No.	Parts	Bore size	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
1	Cylinde	r body			Alumir	num alle	oy (and	dized)		
2	Piston		Alum	inum a	alloy (w	/ear-re	sistant	surface	e treatr	nent)
3	Piston i	rod		ss steel plated)		Stee	el (chro	me pla	ted)	
4	Rod co	ver	Alum	inum a	alloy (w	/ear-re	sistant	surface	e treatr	nent)
(5)	Snap ri	ng			Steel	(black	oxide f	inish)		
6	Bumpe	r		Syn	thetic r	ubber	(uretha	ne rub	ber)	
7	Rod se	al			Syntl	netic ru	ıbber (İ	NBR)		
8	Piston	seal			Syntl	netic ru	ıbber (İ	NBR)		
9	Tube g	asket			Syntl	netic ru	ıbber (İ	NBR)		
10	Suppor	t		Aluminum alloy (anodized)						
11)	Yoke			Mild steel (zinc plated)						
12	Magnet	İ			F	Plastic	magne	t		

Seals

Parts Bore size mm [in.]	Rod seal	Piston seal	Tube gasket
20 [0.787]	MYN-10	PWP-20N	S-18
25 [0.984]	MYN-12	PWP-25N	S-22
32 [1.260]	MYN-16	PWP-32N	φ 29× φ 1.5
40 [1.575]	DRP-16	PWP-40N	φ 39.5× φ 1.5
50 [1.969]	DRP-20	PWP-50N	φ 49.5× φ 1.5
63 [2.480]	DRP-20	PWP-63N	φ 62.5× φ 1.5
80 [3.150]	DRP-25	PWP-80N	φ 77.3× φ 1.5
100 [3.940]	DRP-30	PWP-100N	φ 98.5× φ 2

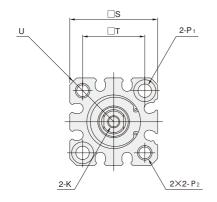
Mounting Bracket Materials

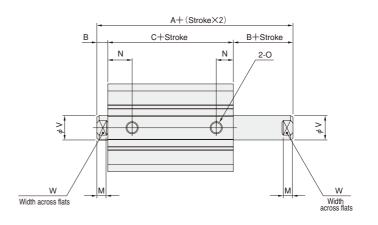
Parts	Materials
Rod end nut (for male thread)	Steel (zinc plated)
Foot bracket	Mild steel (black zinc plated)
Axial foot bracket	Mild steel (black zinc plated)
Flange bracket	Mild steel (black oxide finish)
Bracket mounting bolt	Steel (black oxide finish)

Mass

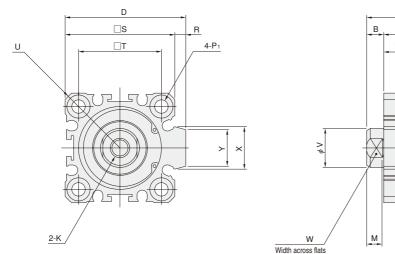
Double rod cylinders: Double acting type

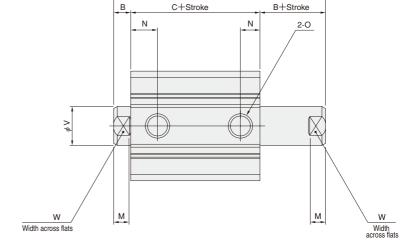
g [oz.]


Bore size	Zero stroke mass	Additional mass for each 1mm	Additional	mass of mounti	ng bracket		Additional mass	of other options	
mm [in.]	(basic type)	[0.0394in.] stroke	Foot bracket	Axial foot bracket	Flange bracket	Male thread piston rod	Cylinder with magnet	ZE Switch	ZD136 switch
20 [0.787]	77.6 [2.737]	3.04 [0.107]	_	_	_	20 [0.71]	28.2 [0.995]		
25 [0.984]	103.9 [3.665]	4.09 [0.144]	_	_	_	40 [1.41]	38.2 [1.347]		
32 [1.260]	168.5 [5.944]	5.65 [0.199]	84 [2.96]	96 [3.39]	210 [7.41]	86 [3.03]	50.8 [1.792]		
40 [1.575]	228.8 [8.071]	6.40 [0.226]	100 [3.53]	110 [3.88]	275 [9.70]	86 [3.03]	72.0 [2.540]	A:15 [0.53]	C:270 [9.52]
50 [1.969]	361.4 [12.75]	9.76 [0.344]	150 [5.29]	160 [5.64]	415 [14.64]	148 [5.22]	109.3 [3.855]	B:35 [1.23]	0.270 [9.52]
63 [2.480]	549.5 [19.38]	11.01 [0.388]	240 [8.47]	260 [9.17]	560 [19.75]	148 [5.22]	156.1 [5.506]		
80 [3.150]	1150.7 [40.59]	17.54 [0.619]	500 [17.64]	520 [18.34]	1515 [53.44]	324 [11.43]	247.0 [8.713]		
100 [3.940]	1972.5 [69.58]	24.37 [0.860]	580 [20.46]	590 [20.81]	1950 [68.78]	582 [20.53]	360.3 [12.71]		

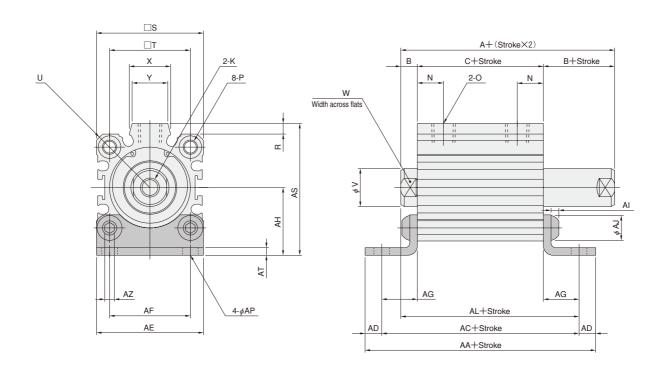

Notes: 1. "With double-sided mounting thread" has the same mass as the basic type.

- 2. Includes the mass for bracket mounting bolts, the rod end nut in the male thread specifications, and the sensor switch mounting brackets.
- 3. The sensor switch codes A, B, and C show the lead wire lengths. (A:1000mm [39in.], B:3000mm [118in.], C:5000mm [197in.])


Calculation example: For the mass of double acting type cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches (ZE135A) $103.9 + 38.2 + (4.09 \times 30) + (15 \times 2) = 294.8g \ [10.40oz.]$


● Basic type JCDAD Bore size \times Stroke (ϕ 20, ϕ 25)

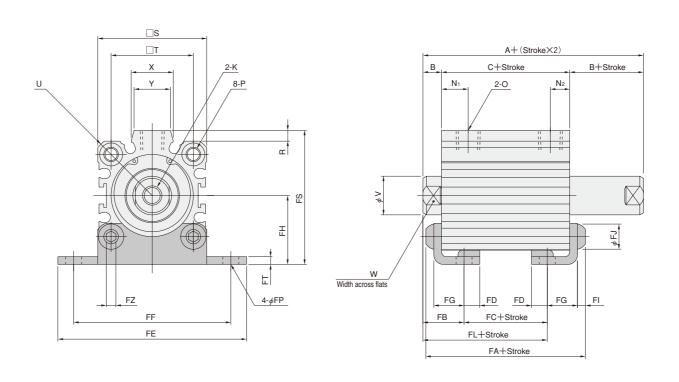
● Basic type JCDAD Bore size \times Stroke (ϕ 32 \sim ϕ 100)



 $A+(Stroke\times 2)$

Туре	Standa	rd cylinder (J	CDAD)	Cylinder v	vith magnet (JCDADS)	D	К	М	N	0
Bore Code mm [in.]	Α	В	С	Α	В	С	ט	, K	IVI	N	U
20 [0.787]	35.5	4.5	26.5	45.5	4.5	36.5	_	M5×0.8 Depth7	4	10	M5×0.8
25 [0.984]	37.5	5	27.5	47.5	5	37.5	_	M6×1 Depth12	4.5	10	M5×0.8
32 [1.260]	47	7	33	57	7	43	49.5	M8×1.25 Depth13	6.5	11	Rc1/8
40 [1.575]	48.5	7	34.5	58.5	7	44.5	57	M8×1.25 Depth13	6.5	11.5	Rc1/8
50 [1.969]	51.5	8	35.5	61.5	8	45.5	71	M10×1.5 Depth15	7	12	Rc1/4
63 [2.480]	57	8	41	67	8	51	84	M10×1.5 Depth15	7	14.5	Rc1/4
80 [3.150]	73.5	10	53.5	83.5	10	63.5	104	M16×2 Depth21	9	16.5	Rc3/8
100 [3.940]	87	12	63	97	12	73	123.5	M20×2.5 Depth27	11	21	Rc3/8

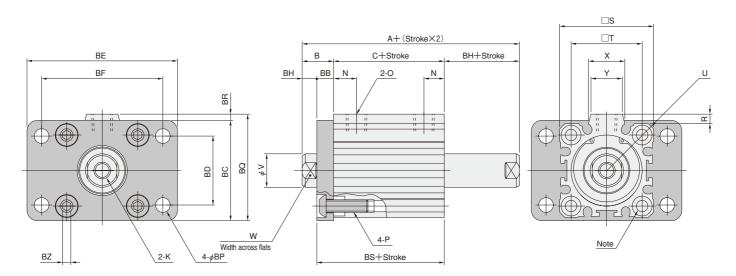
Bore Code mm [in.]		P 1		P ₂	R	S	Т	U	٧	W	Х	Υ
20 [0.787]	ϕ 5.5 (Through hole)	Counterbore <i>ϕ</i> 9	Depth 5.4 (Both sides)	M6×1 Depth10	_	36	25.5	R23.5	10	8	_	_
25 [0.984]	ϕ 5.5 (Through hole)	Counterbore	Depth 5.4 (Both sides)	M6×1 Depth10	_	40	28	R26	12	10	_	_
32 [1.260]	ϕ 5.5 (Through hole)	Counterbore	Depth 5.4 (Both sides)	_	4.5	45	34	R30	16	14	17.4	15
40 [1.575]	ϕ 5.5 (Through hole)	Counterbore	Depth 5.4 (Both sides)	_	5	52	40	R34.5	16	14	20.5	17.5
50 [1.969]	φ 6.6 (Through hole)	Counterbore	Depth 8 (Both sides)	_	7	64	50	R42.5	20	17	21.6	19
63 [2.480]	φ 9 (Through hole)	Counterbore	Depth 10.5 (Both sides)	_	7	77	60	R51	20	17	21.6	19
80 [3.150]	φ 11 (Through hole)	Counterbore	5 Depth 13.5 (Both sides)	_	6	98	77	R65	25	22	27.6	25
100 [3.940]	φ 11 (Through hole)	Counterbore φ 17.5	5 Depth 13.5 (Both sides)	_	6.5	117	94	R78	30	27	27.6	25


●Foot mounting type JCDAD Bore size × Stroke -1

Туре	Standa	ard cylinder (JC	CDAD)	Cylinder	with magnet (J	ICDADS)	V	N	0
Bore Code mm [in.]	Α	В	С	Α	В	С	T N	IN	O
32 [1.260]	47	7	33	57	7	43	M8×1.25 Depth13	11	Rc1/8
40 [1.575]	48.5	7	34.5	58.5	7	44.5	M8×1.25 Depth13	11.5	Rc1/8
50 [1.969]	51.5	8	35.5	61.5	8	45.5	M10×1.5 Depth15	12	Rc1/4
63 [2.480]	57	8	41	67	8	51	M10×1.5 Depth15	14.5	Rc1/4
80 [3.150]	73.5	10	53.5	83.5	10	63.5	M16×2 Depth21	16.5	Rc3/8
100 [3.940]	87	12	63	97	12	73	M20×2.5 Depth27	21	Rc3/8

Туре	D.	В	6	_		V	w	v	v	JCDAD	JCDADS
Bore Code mm [in.]	F	n	3	'	0	٧	VV	^	ı	AA	AA
32 [1.260]	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	4.5	45	34	R30	16	14	17.4	15	77	87
40 [1.575]	Counterbore ϕ 9 Depth 5.4 (Both sides), M 6×1 Depth from main body end 17.4 (Both sides)	5	52	40	R34.5	16	14	20.5	17.5	78.5	88.5
50 [1.969]	Counterbore \$\phi\$ 11 Depth 8 (Both sides), M 8×1.25 Depth from main body end 22 (Both sides)	7	64	50	R42.5	20	17	21.6	19	89.5	99.5
63 [2.480]	Counterbore \$\phi\$ 14 Depth10.5 (Both sides), M10X1.5 Depth from main body end 28.5 (Both sides)	7	77	60	R51	20	17	21.6	19	103	113
80 [3.150]	Counterbore ϕ 17.5 Depth13.5 (Both sides), M12 \times 1.75 Depth from main body end 35.5 (Both sides)	6	98	77	R65	25	22	27.6	25	131.5	141.5
100 [3.940]	Counterbore ϕ 17.5 Depth13.5 (Both sides), M12 \times 1.75 Depth from main body end 35.5 (Both sides)	6.5	117	94	R78	30	27	27.6	25	141	151

Туре	JCDAD	JCDADS	AD	AE	AF	AG	АН	Al	AJ	JCDAD	JCDADS	AP	AS	AT	AZ
Bore Code mm [in.]	AC	AC	AD	AE	АГ	AG	АП	AI	AJ	AL	AL	AP	AS	AI	AZ
32 [1.260]	63	73	7	45	34	15	28.5	4	10.5	55	65	6.6	55.5	3.2	4
40 [1.575]	64.5	74.5	7	53	40	15	32.5	4	10.5	56.5	66.5	6.6	63.5	3.2	4
50 [1.969]	71.5	81.5	9	64	50	18	38	5	14	61.5	71.5	9	77	3.2	5
63 [2.480]	81	91	11	77	60	20	44.5	6	17.5	69	79	11	90	3.2	6
80 [3.150]	103.5	113.5	14	100	77	25	58.5	7	21	88.5	98.5	14	113.5	4.5	8
100 [3.940]	113	123	14	117	94	25	67	7	21	100	110	14	132	4.5	8



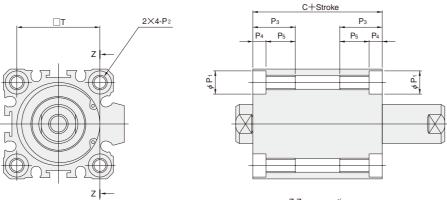
Туре	Standa	ard cylinder (JC	CDAD)	Cylinder	with magnet (JCDADS)	V	N	0
Bore Code mm [in.]	Α	В	С	Α	В	С	K	IN	0
32 [1.260]	47	7	33	57	7	43	M8×1.25 Depth13	11	Rc1/8
40 [1.575]	48.5	7	34.5	58.5	7	44.5	M8×1.25 Depth13	11.5	Rc1/8
50 [1.969]	51.5	8	35.5	61.5	8	45.5	M10×1.5 Depth15	12	Rc1/4
63 [2.480]	57	8	41	67	8	51	M10×1.5 Depth15	14.5	Rc1/4
80 [3.150]	73.5	10	53.5	83.5	10	63.5	M16×2 Depth21	16.5	Rc3/8
100 [3.940]	87	12	63	97	12	73	M20×2.5 Depth27	21	Rc3/8

Туре	D.	-		-		v	w	v	V	JCDAD	JCDADS	FB
Bore Code mm [in.]	P	R	3	'	U	V	VV	^	Ť	FA	FA	ГВ
32 [1.260]	Counterbore \$ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Both sides)	4.5	45	34	R30	16	14	17.4	15	47.4	57.4	16.3
40 [1.575]	Counterbore \$ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (Both sides)	5	52	40	R34.5	16	14	20.5	17.5	48.9	58.9	16.3
50 [1.969]	Counterbore \$11 Depth 8 (Both sides), M8X1.25 Depth from main body end 22 (Both sides)	7	64	50	R42.5	20	17	21.6	19	51.9	61.9	18.8
63 [2.480]	Counterbore \$ 14 Depth10.5 (Both sides), M10×1.5 Depth from main body end 28.5 (Both sides)	7	77	60	R51	20	17	21.6	19	59.4	69.4	20.3
80 [3.150]	Counterbore \$\phi\$ 17.5 Depth13.5 (Both sides), M12×1.75 Depth from main body end 35.5 (Both sides)	6	98	77	R65	25	22	27.6	25	76.5	86.5	26.5
100 [3.940]	Counterbore \$\phi\$ 17.5 Depth13.5 (Both sides), M12×1.75 Depth from main body end 35.5 (Both sides)	6.5	117	94	R78	30	27	27.6	25	86	96	28.5

Туре	JCDAD	JCDADS	FD		FF	F0	F.1.			JCDAD	JCDADS	FP	F0		F-7
Bore Code mm [in.]	FC	FC	FD	FE	FF	FG	FH	FI	FJ	FL	FL	FP	FS	FT	FZ
32 [1.260]	14.4	24.4	6.5	78	65	12.5	28.5	4	10.5	30.7	40.7	6.6	55.5	3.2	4
40 [1.575]	15.9	25.9	6.5	87	73	12.5	32.5	4	10.5	32.2	42.2	6.6	63.5	3.2	4
50 [1.969]	13.9	23.9	8	103	87	14	38	5	14	32.7	42.7	9	77	3.2	5
63 [2.480]	16.4	26.4	9.5	127	109	15.5	44.5	6	17.5	36.7	46.7	11	90	3.2	6
80 [3.150]	20.5	30.5	11	145	123	21	58.5	7	21	47	57	14	113.5	4.5	8
100 [3.940]	30	40	11	159	137	21	67	7	21	58.5	68.5	14	132	4.5	8

 $\blacksquare \text{Rod side flange mounting type} \quad \textbf{JCDAD} \quad \boxed{ \text{Bore size}} \times \boxed{ \text{Stroke}} \text{-3}$

Note: Because tapped holes are on one side only, the flange mounting bracket cannot be mounted on the opposite side.


Туре	Standa	ard cylinder (JC	CDAD)	Cylinder	with magnet (JCDADS)	- К	N	0
Bore Code mm [in.]	Α	В	С	Α	В	С	N.	IN	O
32 [1.260]	55	15	33	65	15	43	M8×1.25 Depth13	11	Rc1/8
40 [1.575]	58.5	17	34.5	68.5	17	44.5	M8×1.25 Depth13	11.5	Rc1/8
50 [1.969]	61.5	18	35.5	71.5	18	45.5	M10×1.5 Depth15	12	Rc1/4
63 [2.480]	67	18	41	77	18	51	M10×1.5 Depth15	14.5	Rc1/4
80 [3.150]	89.5	26	53.5	99.5	26	63.5	M16×2 Depth21	16.5	Rc3/8
100 [3.940]	103	28	63	113	28	73	M20×2.5 Depth27	21	Rc3/8

Bore Code mm [in.]	P	R	s	т	U	v	w	x	Y	ВВ
32 [1.260]	Counterbore \$\phi\$ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (one side)	4.5	45	34	R30	16	14	17.4	15	8
40 [1.575]	Counterbore \$\phi\$ 9 Depth 5.4 (Both sides), M 6X1 Depth from main body end 17.4 (one side)	5	52	40	R34.5	16	14	20.5	17.5	10
50 [1.969]	Counterbore	7	64	50	R42.5	20	17	21.6	19	10
63 [2.480]	Counterbore	7	77	60	R51	20	17	21.6	19	10
80 [3.150]	Counterbore	6	98	77	R65	25	22	27.6	25	16
100 [3.940]	Counterbore	6.5	117	94	R78	30	27	27.6	25	16

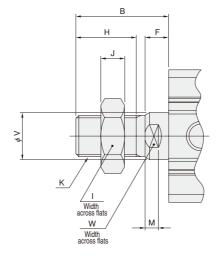
Туре	ВС	BD	BE	BF	ВН	ВР	BQ	BR	JCDAD	JCDADS	BZ
Bore Code mm [in.]	ВС	БО	DE	DF	БП	DP	ьQ	DR	BS	BS	DΖ
32 [1.260]	48	33	72	58	7	7	51	3	41	51	4
40 [1.575]	56	36	84	70	7	7	59	3	44.5	54.5	4
50 [1.969]	70	47	104	86	8	9	74	4	45.5	55.5	5
63 [2.480]	84	56	116	98	8	9	87.5	3.5	51	61	6
80 [3.150]	105	70	150	126	10	12	107.5	2.5	69.5	79.5	8
100 [3.940]	121	84	165	143	12	12	125.5	4.5	79	89	8

With Double-sided Mounting Thread Dimensions (mm)

- Double acting type JCDAD Bore size × Stroke -13
- $\Phi \phi 32 \sim \phi 100$

Z-Z cross section

Bore Code mm [in.]	P 1	P ₂	P 3	P 4	P ₅ Note	Т
32 [1.260]	9	M6×1	17.4	5.4	12	34
40 [1.575]	9	M6×1	17.4	5.4	12	40
50 [1.969]	11	M8×1.25	22	8	14	50
63 [2.480]	14	M10×1.5	28.5	10.5	18	60
80 [3.150]	17.5	M12×1.75	35.5	13.5	22	77
100 [3.940]	17.5	M12×1.75	35.5	13.5	22	94


Note: When "C + Stroke" is less than the values shown below, the through thread is used.

Code Bore mm [in.]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
C+Stroke	38	39.5	45.5	61	73.5	73

For dimensions not shown in this diagram, see the Double Rod Cylinders Basic Type.

Dimensions of Male Rod End Thread Specification (mm)

- Double acting type JCDAD Bore size × Stroke -B
- φ 20~ φ 100

Bore Code mm [in.]	В	F	Н	I	J	K	M	V	W
20 [0.787]	18.5	4.5	12	13	5	M8×1.25	4	10	8
25 [0.984]	22.5	5	15	17	6	M10×1.25	4.5	12	10
32 [1.260]	28.5	5	20.5	22	8	M14×1.5	4.5	16	14
40 [1.575]	28.5	5	20.5	22	8	M14×1.5	4.5	16	14
50 [1.969]	33.5	5	25.5	24	11	M18×1.5	4	20	17
63 [2.480]	33.5	5	25.5	24	11	M18×1.5	4	20	17
80 [3.150]	43.5	8	32.5	30	13	M22×1.5	7	25	22
100 [3.940]	43.5	8	32.5	41	16	M26×1.5	7	30	27

- The double rod cylinder has male thread on both rod ends (rod end nuts come on both rod ends).
- The dimensions shown the above are values with the rod at retracted position.

JIG CYLINDERS JC SERIES

Mounting Screws for Jig Cylinders

Some types of mounting screws specifically for the Jig Cylinders are available.

Use the order codes below to place orders.

- List of Order Codes

 ① Mounting screw type: JIS B 1176 Hexagon socket head cap screws
 ② Surface treatment: Nickel plated

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws
	CRK145	M5×35	
	CRK146	M5×40	
	CRK147	M5×45	
	CRK148	M5×50	
	CRK149	M5×55	
20 [0.787]	CRK150	M5×60	
25 [0.984]	CRK151	M5×65	
32 [1.260]	CRK152	M5×70	4
40 [1.575]	CRK153	M5×75	
	CRK154	M5×80	
	CRK155	M5×85	
	CRK156	M5×90	
	CRK157	M5×100	
	CRK158	M5×110	
	CRK159	M6×40	
	CRK160	M6×45	
	CRK161	M6×50	
	CRK162	M6×55	
	CRK163	M6×60	
	CRK164	M6×65	
	CRK165	M6×70	
	CRK166	M6×75	
50 [1.969]	CRK167	M6×80	4
	CRK168	M6×85	
	CRK169	M6×90	
	CRK170	M6×100	
	CRK171	M6×110	
	CRK172	M6×120	
	CRK173	M6×130	
	CRK174	M6×140	
	CRK175	M6×150	

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws
	CRK176	M8×60	
	CRK177	M8×65	
	CRK178	M8×70	
	CRK179	M8×75	
	CRK180	M8×80	
	CRK181	M8×85	
	CRK182	M8×90	
63 [2.480]	CRK183	M8×95	4
00 [2: 100]	CRK184	M8×100	
	CRK185	M8×110	
	CRK186	M8×120	
	CRK187	M8×130	
	CRK188	M8×140	
	CRK189	M8×150	
	CRK190	M8×160	
	CRK191	M8×170	
	CRK192	M10×65	
	CRK193	M10×70	
	CRK194	M10×75	
	CRK195	M10×80	
	CRK196	M10×85	
	CRK197	M10×90	
80 [3.150]	CRK198	M10×95	
100 [3.940]	CRK199	M10×100	4
100 [0.0 10]	CRK200	M10×110	
	CRK201	M10×120	
	CRK202	M10×130	
	CRK203	M10×140	
	CRK204	M10×150	
	CRK205	M10×160	
	CRK206	M10×170	

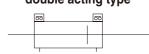
SENSOR SWITCHES

Solid State Type, Reed Switch Type

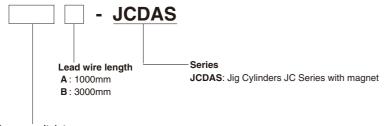
Symbols

Double acting type

● Single acting push type


Single acting pull type

Double rod cylinder double acting type



Order Codes

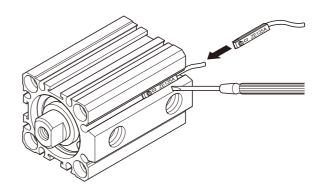
Sensor switch type

ZE101 : Reed switch type without indicator lamp, Horizontal lead wire DC5 \sim 28V, AC85 \sim 115V **ZE201 :** Reed switch type without indicator lamp, Vertical lead wire DC5 \sim 28V, AC85 \sim 115V

 $\textbf{ZE155:} \ \, \text{Solid state type with indicator lamp, Horizontal lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE255:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V} \\ \textbf{ZE250:} \ \, \text{Solid state type with indicator lamp, Vertical lead wire} \qquad \quad \, \text{DC4.5} \sim 28 \text{V$

ZE102 : Reed switch type with indicator lamp, Horizontal lead wire $DC10\sim28V$, $AC85\sim115V$ **ZE202 :** Reed switch type with indicator lamp, Vertical lead wire $DC10\sim28V$, $AC85\sim115V$

● For details of sensor switches, see p.1544.


Minimum Cylinder Strokes When Using Sensor Switches

					mm [in.]	
		2	pcs. mountin	ıg		
	Mounting	1-surface	mounting	2-surface	1pc. mounting	
Type	Bore size	1-groove mounting 2-groove mounting		mounting		
Solid state type	20~100 [0.787~3.940]	15 ^{Note}	10	10	5	
Reed switch type	20~100 [0.787~3.940]	20 ^{Note}	10	10	10	

Note: The figures in the above table assume that the lead wires' opposing end surfaces are mounted facing each other toward the cylinder center.

Moving Sensor Switch

- Loosening mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder
- Tighten the mounting screw with a tightening torque of 0.1 \sim 0.2N·m [0.9~1.8in.lbf]. Overtightening could damage the sensor switch and actuator.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

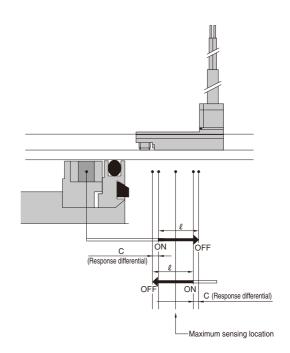
■Operating range: ℓ

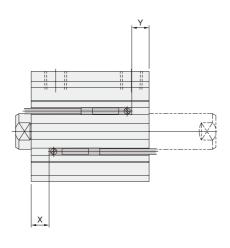
The distance the piston travels in one direction, while the switch is in the ON position.

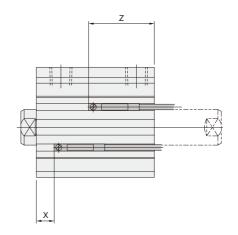
Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Solid state type


Solid State	Solid state type mm [in.]										
Item Bore size	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]			
Operating range: ℓ	2.0~6.0 [0.079~0.236]	2.5~6.0 [0.098~0.236]	2.0~6.0 [0.079~0.236]	2.5~5.5 [0.098~0.217]	3.0~7.0 [0.118~0.276]	3.0~7.0 [0.118~0.276]	3.5~8.0 [0.138~0.315]	4.0~8.5 [0.157~0.335]			
Response differential: C		1.0 [0.039] or less 1.5 [0.059] or less									
Maximum sensing location 6 [0.236]											


Note: The figures in the above table assume that they are lengths measured from the switch's opposite end side to the lead wire. The above table shows reference values


Reed switch type

mm [in.] Bore size 20 [0.787] 25 [0.984] 32 [1.260] 40 [1.575] 50 [1.969] 63 [2.480] 80 [3.150] 100 [3.940] 8.0~12.5 | 9.0~13.0 | 7.5~12.0 | 9.0~13.0 | 10.0~14.0 | 11.0~15.5 | 11.0~15.5 | 12.0~16.5 Operating range: ℓ $\left[0.315 \sim 0.492 \right] \left[0.354 \sim 0.512 \right] \left[0.295 \sim 0.472 \right] \left[0.354 \sim 0.512 \right] \left[0.394 \sim 0.551 \right] \left[0.433 \sim 0.610 \right] \left[0.433 \sim 0.610 \right] \left[0.472 \sim 0.650 \right]$ Response differential: C 1.5 [0.059] or less 2.0 [0.079] or less Maximum sensing location 10 [0.394]

Note: The figures in the above table assume that they are lengths measured from the switch's opposite end side to the lead wire. The above table shows reference values

■ Standard cylinder: Double acting type, Single acting push type

 Solid state type:
 Double acting type
 mm [in.]

 Code
 Bore size
 20
 25
 32
 40
 50
 63
 80
 100

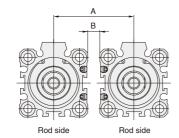
 X
 10.5 [0.413]
 10.0 [0.394]
 11.5 [0.453]
 16.0 [0.630]
 18.0 [0.780]
 21.5 [0.846]
 24.5 [0.965]

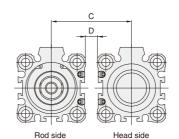
 Y
 8.5 [0.335]
 10.0 [0.394]
 9.0 [0.354]
 11.0 [0.433]
 12.5 [0.492]
 15.5 [0.610]
 20.0 [0.787]
 26.5 [1.043]

 Z
 21.5 [0.846]
 22.5 [0.886]
 21.5 [0.846]
 23.5 [0.925]
 25.0 [0.984]
 28.0 [1.102]
 32.5 [1.280]
 39.0 [1.533]

Reed switc	■ Reed switch type: Double acting type mm [in.]										
Code Bore size	20	25	32	40	50	63	80	100			
X	6.5 [0.256]	6.0 [0.236]	7.5 [0.295]	12.0 [0.472]	12.0 [0.472]	14.5 [0.571]	17.5 [0.689]	20.5 [0.807]			
Υ	4.5 [0.177]	6.0 [0.236]	5.0 [0.197]	7.0 [0.276]	8.5 [0.335]	11.5 [0.453]	16.0 [0.630]	22.5 [0.886]			
Z	25.5 [1.004]	26.5 [1.043]	25.5 [1.004]	27.5 [1.083]	29.0 [1.142]	32.0 [1.260]	36.5 [1.437]	43.0 [1.693]			

	Solid state type: Single acting push type mm [in.										m [in.]
ĺ	Bore size	20		25		32		40		50	
	Code	5~10	15~30	5~10	15~30	5~10	15~30	5~10	15~50	10~20	25~50
	Χ	10.5 [0.413]	15.5 [0.610]	10.0 [0.394]	15.0 [0.591]	11.5 [0.453]	16.5 [0.650]	16.0 [0.630]	26.0 [1.024]	16.0 [0.630]	26.0 [1.024]
	Υ	8.5 [0.335]	8.5 [0.335]	10.0 [0.394]	10.0 [0.394]	9.0 [0.354]	9.0 [0.354]	11.0 [0.433]	11.0 [0.433]	12.5 [0.492]	12.5 [0.492]
	Z	21.5 [0.846]	21.5 [0.846]	22.5 [0.886]	22.5 [0.886]	21.5 [0.846]	21.5 [0.846]	23.5 [0.925]	23.5 [0.925]	25.0 [0.984]	25.0 [0.984]


■ Reed switch type: Single acting push type mm [in.]										
Bore size	20		25		32		40		50	
Code	5~10	15~30	5~10	15~30	5~10	15~30	5~10	15~50	10~20	25~50
Х	6.5 [0.256]	11.5 [0.453]	6.0 [0.236]	11.0 [0.433]	7.5 [0.295]	12.5 [0.492]	12.0 [0.472]	22.0 [0.866]	12.0 [0.472]	22.0 [0.866]
Υ	4.5 [0.177]	4.5 [0.177]	6.0 [0.236]	6.0 [0.236]	5.0 [0.197]	5.0 [0.197]	7.0 [0.276]	7.0 [0.276]	8.5 [0.335]	8.5 [0.335]
Z	25.5 [1.004]	25.5 [1.004]	26.5 [1.043]	26.5 [1.043]	25.5 [1.004]	25.5 [1.004]	27.5 [1.083]	27.5 [1.083]	29.0 [1.142]	29.0 [1.142]


■ Double rod cylinder: Double acting type

Solid state	● Solid state type: Double acting type mm [in.]										
Code Bore si	ze 20	25	32	40	50	63	80	100			
Х	10.5 [0.413]	10.0 [0.394]	11.5 [0.453]	16.0 [0.630]	16.0 [0.630]	18.5 [0.728]	21.5 [0.846]	24.5 [0.965]			
Υ	13.5 [0.531]	15.0 [0.591]	19.0 [0.748]	16.0 [0.630]	17.5 [0.689]	20.5 [0.807]	30.0 [1.181]	36.5 [1.437]			
Z	26.0 [1.024]	27.5 [1.083]	31.5 [1.240]	28.5 [1.122]	30.0 [1.181]	33.0 [1.299]	42.5 [1.673]	49.0 [1.929]			

● Reed switch type: Double acting type mm [in.]										
Code Bore size	20	25	32	40	50	63	80	100		
X	6.5 [0.256]	6.0 [0.236]	7.5 [0.295]	12.0 [0.472]	12.0 [0.472]	14.5 [0.571]	17.5 [0.689]	20.5 [0.807]		
Υ	9.5 [0.374]	11.0 [0.433]	15.0 [0.591]	12.0 [0.472]	13.5 [0.531]	16.5 [0.650]	26.0 [1.024]	32.5 [1.280]		
Z	30.0 [1.181]	31.5 [1.240]	35.5 [1.398]	32.5 [1.280]	34.0 [1.339]	37.0 [1.457]	46.5 [1.831]	53.0 [2.087]		

When Mounting Sensor Switches in Close Proximity

Bore size		Solid st	ate type		Reed switch type				
Dore Size	Α	В	С	D	Α	В	С	D	
20 [0.787]	36 [1.417]		41 [1.614]	5 [0.197]	36 [1.417]	0	42 [1.654]	6 [0.236]	
25 [0.984]	40 [1.575]		45 [1.772]		40 [1.575]	U	46 [1.811]	6 [0.236]	
32 [1.260]	45 [1.772]		50 [1.969]		51 [2.008]	6 [0.236]	53 [2.087]	8 [0.315]	
40 [1.575]	52 [2.047]	0	57 [2.244]		58 [2.283]		60 [2.362]		
50 [1.969]	64 [2.520]	0	69 [2.717]	5 [0.197]	70 [2.756]		74 [2.913]		
63 [2.480]	77 [3.031]		82 [3.228]		83 [3.268]		87 [3.425]	10 [0.394]	
80 [3.150]	98 [3.858]		103 [4.055]		104 [4.094]		108 [4.252]	1	

123 [4.843]

122 [4.803]

117 [4.606]

100 [3.940]

15 [0.591]

132 [5.197]

mm [in.]

[●] For the Handling Instructions and Precautions for Sensor Switches, see p.252.

STRONG MAGNETIC FIELD RESISTANT SENSOR SWITCH

Solid State Type

ZD136C is a sensor switch designed to operate normally without erratic operation even when used in spot welding lines or other areas subjected to strong magnetic field. A delay circuit (ON delay, OFF delay) and holding circuit inside the switch help it to avoid the effects of AC external magnetic fields to remain the switch's ON and OFF output.

For the symbol, see p.246.

Specifications

Item	Model	ZD136C						
Wiring type		2-lead	2-lead wires					
Load voltag	je	DC10	~28V					
Load currer	nt	5~5	0mA					
Internal vol	tage drop	5.0V MAX. (load cu	rrent at 50mA)Note 1				
Leakage cu	ırrent	1.0m <i>A</i>	A MAX					
		50ms MAX.		80ms MAX.				
Response t	ime	ON delay = 40ms TYP.	OFF delay=	65ms TYP.				
		30ms MIN.		50ms MIN.				
Insulation r	esistance	$100 M\Omega$ MIN. (DC500V megger between case and lead wire terminal)						
Dielectric st	trength	AC500V (50/60Hz) for 1 minute (Be	tween case and lead	d wire terminals)				
Shock resis	stance ^{Note 2}	294.2m/s ² [30G] (Non-repeated shock)						
Vibration resi	stance ^{Note 2}	88.3m/s ² [9G] (Total amplitude	1.5mm [0.059in.	.], 10~55Hz)				
Protective s	structure	IP67 (IEC standard), JIS	C0920 (water	tight type)				
Operation	Setting range	When ON, a green L	ED indicator lig	ghts up				
indicator	Unstable range	When ON, a red LE	D indicator ligh	nts up				
Lead wire ^{No}	ote 3	Oil-resistance, spatter-resistant	cabtyre cable 2-lea	ad, 0.5SQ× ℓ				
Magnetic field	resistance ^{Note 2}	AC17000A						
Ambient ter	mperature	0~60°C [32~140°F]						
Storage tempe	erature range	−10~70°C [14~158°F]						
Mass		270g [9	9.52oz.]					

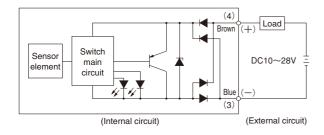
Notes: 1. When using a programmable controller with input voltage of 12V, care should be taken about the programmable controller's ON voltage. Effect of the sensor switch's internal voltage drop could sometimes prevent use of the device.

2. According to Koganei test standards.

3. Lead wire length ℓ C: 5000mm [197in.]

Minimum Cylinder Strokes When Using Sensor Switches

mr							
		2	pcs. mountir	ng	4		
	Mounting	1-surface	mounting	2-surface	1pc. mounting		
Туре	Bore size	1-groove mounting	2-groove mounting	mounting			
Strong magnetic	32~50	100	_	10 ^{Note}	5Note		
field type	63~100	70	100	10.10.0	5.10.0		


Note: The values in the table above are related to the lead wire bending radius (strong magnetic field type has a minimum bending radius 25mm [0.984in.]), and allow the lead wire protruding from the cylinder body to outside when bent to the minimum.

For the minimum stroke value when lead wires are not protruding from the cylinder body to outside, see the table below.

mm [in.]

	Bore size	Lead wire protrusion direction				
	Bore size	Head cover side	Rod cover side			
Strong magnetic field type	32 [1.260]	55	55			
	40 [1.575]	55	50			
	50 [1.969]	55	50			
	63 [2.480]	50	50			
	80 [3.150]	45	45			
	100 [3.940]	40	40			

Internal Circuit and Outline of Operations

Caution: ZD136C is a non-polarity type. Connect either the brown or the blue lead wire to the load.

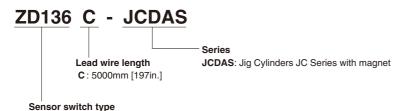
Outline of operations

Magnetic field	No disturbance by a	an AC magnetic field	Disturbance by an AC magnetic field		
Sensor switch	Without magnet	With magnet	Without magnet	With magnet	
Sensor element	OFF	ON	OFF↔ON	OFF↔ON	
Sensor switch output	OFF	ON	OFF	ON	

• The strong magnetic field resistant sensor switch can be used in locations subjected to disturbance by AC magnetic fields (areas near AC welder etc.). The strong magnetic field resistant sensor switch has a function of changing its switch output only when the magnetic field is applied for a fixed period of time in an ON or OFF state.

Magnetic fields generated by welding currents at areas near AC welder change the current at set intervals, and the magnetic field is not continuously generated longer than the time required for changing the sensor switch output.

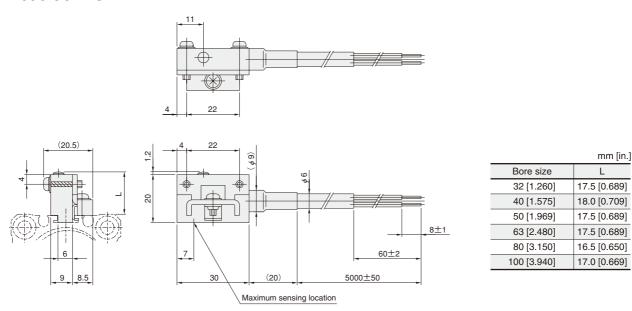
Therefore, the sensor switch output is not affected by magnetic fields generated by welding current from AC welding equipment.


Caution: The sensor switch cannot be used in areas near DC welder (including inverters), because the magnetic fields generated by the welding equipment remain constant.

●In the case of no disturbance by an AC magnetic field

When a sensor element detects the magnetic field of a magnet, the sensor switch output changes to ON about 40ms later. When the magnetic field generated by the magnet disappears, sensor switch output returns to the OFF position about 65ms later.

In the case of existing disturbance by an AC magnetic field


Disturbance by an AC magnetic field causes sensor elements to switch repeatedly from ON to OFF states regardless of whether there is a magnet or not. However, use of an ON delay or OFF delay circuit allows sensor switch output to proceed without effect from disturbances by the AC magnetic field.

ZE136: Strong magnetic field resistant sensor switch 2-lead wire Solid state type with indicator lamp DC10~28V Horizontal lead wire

Dimensions of Sensor Switch (mm)

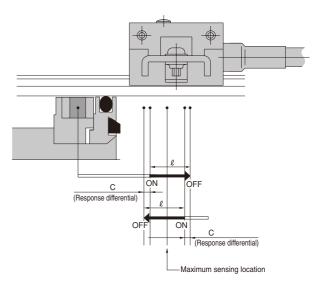
ZD136C-JCDAS

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: \(\ell \)

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C


The distance between the point where the piston turns the switch ON and the point where the switch turns OFF as the piston travels in the opposite direction.

● St	rong	magnetic	field	type
------	------	----------	-------	------

Strong magnetic field type mm [in.]						
Item Bore size	32	40	50	63	80	100
Operating range: ℓ	(1.5~4.0)	(2.0~4.5)	3.5~7.0 [0.138~0.276] (2.0~4.5) [0.079~0.177]	(3.0~5.5)	(3.0~6.0)	(3.0~6.0)
Response differential: C	1.0 [0.039] or less					
Maximum sensing location	7 [0.276]					

Notes: 1. The figures in the above table assume that they are measured from the opposite side of the lead wire. The above table shows reference values.

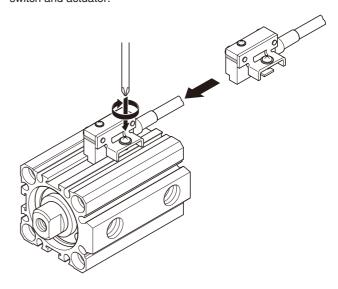
2. Figures in parentheses () show the optimum adjustment range (green LED lights up).

In an unstable range, the red LED lights up, while the green LED lights up when in the setting range.

Operating output is ON whenever an LED is lighted.

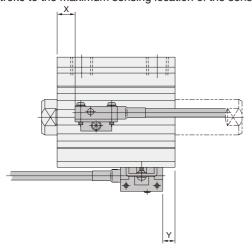
There is no change in operating output (sensor switch output) between the setting range and unstable range.

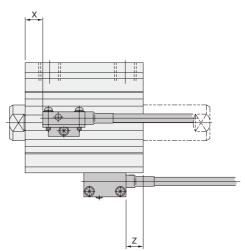
Strong Magnetic Field Resistant Sensor Switch Wiring Instructions


Same as the wiring instructions for the 2-lead wire solid state sensor switch on p.1554.

When Mounting Sensor Switches in Close Proximity

Sensor switches can be used even when contacting each other.


Moving Sensor Switch


- Loosening mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- ■Tighten the mounting screw with a tightening torque of 0.6 N·m [5.3in·lbf]. Overtightening could damage the sensor switch and actuator.

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes at the end of stroke to the maximum sensing location of the sensor switch.

■ Standard cylinders: Double acting type, Single acting push type

Double acting type mm [ir							
Code Bore size	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]	
X	10.5 [0.413]	15.0 [0.591]	15.0 [0.591]	17.5 [0.689]	21.5 [0.846]	23.5 [0.925]	
Υ	8.0 [0.315]	10.0 [0.394]	11.5 [0.453]	14.5 [0.571]	19.0 [0.748]	25.5 [1.004]	
Z	_	_	_	-1.5 [-0.059]	3.0 [0.118]	9.5 [0.374]	

Single acting push type mm [in.] 32 [1.260] 40 [1.575] 50 [1.969] Stroke 5~10 15~30 5~10 15~50 10~20 15.0 [0.591] Χ 10.5 [0.413] 15.5 [0.610] 15.0 [0.591] 20.0 [0.787] 20.0 [0.787] Υ 8.0 [0.315] 8.0 [0.315] 10.0 [0.394] 10.0 [0.394] 11.5 [0.453] 11.5 [0.453] Ζ

■ Double rod cylinders: Double acting type

● Double acting type mm [in							
Code Bore size	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]	
X	10.5 [0.413]	15.0 [0.591]	15.0 [0.591]	17.5 [0.689]	20.5 [0.807]	23.5 [0.925]	
Υ	18.0 [0.709]	15.0 [0.591]	16.5 [0.650]	19.5 [0.768]	29.0 [1.142]	35.5 [1.398]	
Z	2.0 [0.079]	-0.5 [-0.020]	0.5 [0.020]	3.5 [0.138]	13.0 [0.512]	19.5 [0.768]	

Wiring

- For wiring work, excessively bending the lead wires, or applying too much pulling force on them, can lead to a break in the wiring. Allow plenty of margin when engaged in wiring work
- **2.** When the actuator mounting sensor switches is swaying, allow plenty of margin for the wiring. Repeated pulling or bending force could result in a break in the wiring.

Mounting

For adjustment of the sensor switch mounting location, loosen the mounting screws, etc. Avoid use of hammers, etc., to perform adjustment, because the hammering could result in damage to internal elements or erratic operation.

Environment

The sensor switch employs an sealed structure that offers a high degree of dust-proof and a fair degree of waterproof. Nevertheless, it cannot be used in locations that are constantly subjected to water or oil dripping.

Electrical related precautions

- Do not connect the sensor switch to a power supply directly, and always connect the load before connecting to a power supply. Direct connection to a power supply will damage the sensor switch.
- 2. When wiring the sensor switch, always shut off the power supply circuit before commencing the wiring work. Attempting operations while the power is ON could cause short circuit in the wiring that may result in damage to the sensor switch and also to other control equipment.
- 3. For use, do not let the operating voltage and current exceed ranges in the specifications. Because operations beyond the specifications range, or near the upper or lower limits could result in unstable operations, use at values that offer plenty of margin.