

KOGANEI

ACCESSORIES GENERAL CATALOG

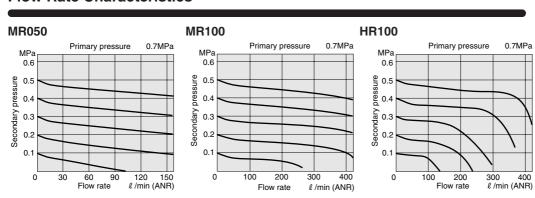
AIR TREATMENT, AUXILIARY, VACUUM, **AND FLUORORESIN PRODUCTS**

MANIFOLD REGULATORS CONTENTS

Features, Flow Rate Characteristics ————————————————————————————————————	115
Specifications, Port Size ————————————————————————————————————	116
Inner Construction, Major Parts and Materials —————	117
Order Codes, Application Examples ——————	118
Dimensions —	119
Handling Instructions and Precautions —————	121

Flexible and centralized control of supply pressure

Manifold Regulators

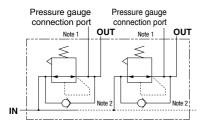

The Manifold Regulator offers adjustment and confirmation of supply pressure at a single location.

Moreover, a new high-relief type has been added to the R100 series, further expanding functional capabilities. P port piping is available in two types, a port collective type and an individual station type, selected according to flow rate and primary pressure conditions.

In addition, such options as the built-in check mechanism type, the compact pressure gauge, as well as the non-ion specification, offer flexible response to every application.

		A type manifold: P port collective type	B type manifold: P port individual station type	Mounting regulator	Option: Pressure gauge
Basic models and configurations of manifold regulators The high-relief type manifold (R100M H) can be moun combination with the standar regulator. The standard type regulator a relief type.	ited in				
R050 series		R050M□A	R050M□B	MR050:Standard type MR052:Built-in check mechanism standard type	
R100 series	Standard type	R100M□A	R100M⊡B	MR100:Standard type MR102:Built-in check mechanism standard type	-GA:Bottom piping \$\phi 20\times 1MPa\$ (Order code for the pressure gauge only: G1-20A)
n IUU series	High-relief type	R100M⊡HA	R100M⊡HB	HR100:High-relief type MR100:Standard type MR102:Built-in check mechanism standard type	-GD:Back piping

Flow Rate Characteristics

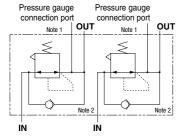


1MPa = 145psi. 1 \(\ell/min = 0.0353ft\) /min.

Specifications

Standard type

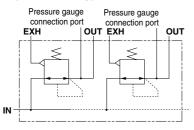
P port collective type: R050M A, R100M A

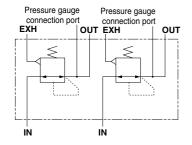


Notes: 1.The R050 series does not have a pressure

gauge connection port.

The check mechanism is available in MR052 and MR102 only.


Individual station type: R050M□B, R100M□B


Notes: 1.The R050 series does not have a pressure gauge connection port.
2.The check mechanism is available in MR052 and MR102 only.

High-relief type

P port collective type: R100M ☐ HA

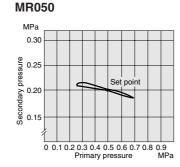
Individual station type: R100M□HB

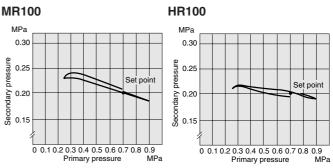
	1			
Model	Standard type	MR050	MR100	_
	Built-in check mechanism	MR052	MR102	_
Item	High-relief type	_	_	HR100
Media			Air	
Operation method		Piston type	Diaphragm type	Piston type
Port size ^{Note}	Rc	1/8	1/8, 1/4	
Pressure setting range MPa [psi.]		0.05~0.5 [7~73]	0.05~0.7 [7~102]	
Relief starting pressure MPa [psi.]		_	_	Setting pressure +0.03 [4]
Maximum operating p	ressure MPa [psi.]	0.7 [102]	0.9 [131]	0.93 [135]
Proof pressure MPa [psi.]		1.03 [149]	1.32 [191]	1.47 [213]
Operating temperature	e range °C [°F]		5~60 [41~140]	
Options Pressure gauge		_	With G1-20A (G1-20D (back	bottom piping) or piping)

Note: See the table of port size, for details

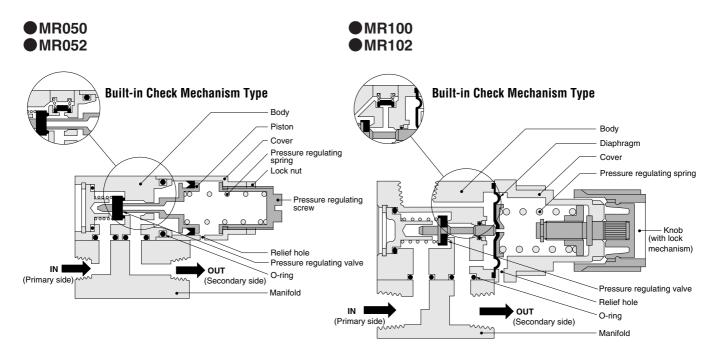
Port size

Model	Ports	Location of piping connection	Port size	
R050M□A	IN	Manifold (collective)	Rc1/8	
HU3UIVI A	OUT	Manifold	nci/o	
R050M□B	IN	Manifold	Rc1/8	
HO30INI D	OUT	Manifold	nc i/o	
	IN	Manifold (collective)	Rc1/4	
R100M□A	OUT	Manifold	Rc1/8	
	Pressure gauge connection port	Regulator body	nci/o	
	IN	Manifold		
R100M□B	OUT	Manifold	Rc1/8	
	Pressure gauge connection port	Regulator body		
	IN	Manifold (collective)	Rc1/4	
R100M□HA	OUT	Manifold		
H IUUWI □ HA	EXH (relief)	Manifold	Rc1/8	
	Pressure gauge connection port	Regulator body		
	IN	Manifold		
R100M□HB	OUT	Manifold	Rc1/8	
n IUUMI∟⊓D	EXH (relief)	Manifold	HC1/8	
	Pressure gauge connection port	Regulator body		

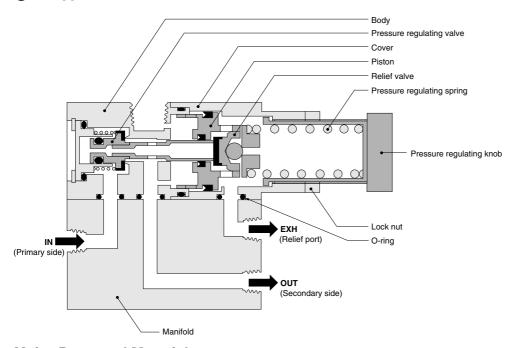

Mass


								g [lb]
Model	Manifold mass calculation	Mounted regulator			Pressure gauge (Optional)		Block-off	
	(n = No. of units)	MR050 MR052	MR100 MR102	HR100	-GA20	-GD20	plate	
R050M□A	, R050M□B	(24×n)+20 [0.053×n+0.044]	40 [0.088]	_	_	_	_	3 [0.007]
R100M□A	, R100M□B	(36×n)+30 [0.079×n+0.066]	_	82 [0.181]	_	37 [0.082]	33 [0.073]	5 [0.011]
R100M□HA	A, R100M□HB	(124×n)+102 [0.273×n+0.225]	_	82 [0.181]	134 [0.295]	37 [0.082]	33 [0.073]	10 [0.022]

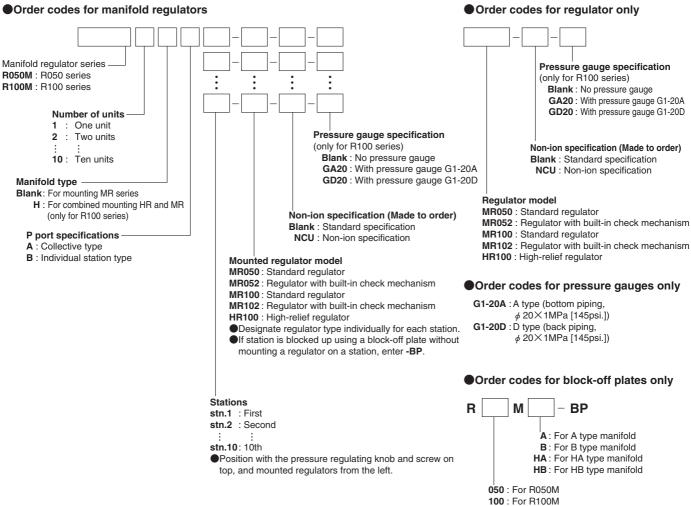
Relief Flow Rate Characteristics


Pressure Characteristics

HR100 0.7 MPa Secondary load pressure 0.6 0.5 Secondary pressure 0.4 0.3 0.2 0.1 (At pressure rise of 0.05MPa) 20 40 60 80 100 Relief flow rate ℓ/min (ANR) 0

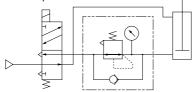


1MPa = 145psi. $1 \ell/min = 0.0353ft.3/min.$


●HR100

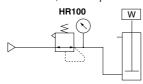
Major Parts and Materials

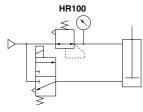
Item	Model	MR050	MR100	HR100	Non-ion specification
Body		Aluminum alloy (anodized)	Aluminum die-casting	Aluminum alloy (anodized)	←
Pressure regulating s	crew	Brass	-	_	Brass (Electroless nickel plated)
Knob		_	Plastic (POM)	_	←
Pressure regulating k	re regulating knob —		_	Aluminum alloy (anodized)	←
Cover		Aluminum alloy (anodized) —		Brass	Brass (Electroless nickel plaed)
Bonnet		— Plastic (PBT)		_	←
Piston		Aluminum alloy (anodized) —		Aluminum alloy (anodized)	←
Diaphragm		Synthetic rubber (NBR)		_	←
Pressure regulating s	pring		Piano wire (chromated)		←
Seal		Synthetic rubber (NBR)			←
Pressure regulating valve	assembly	— Brass			Aluminum alloy, brass (Electroless nickel plated)
Manifold	Body	Aluminum alloy (anodized)			←
IVIATIIIOIU	Seal		Synthetic rubber (NBR)	←	


Remark: The non-ion specification is made to order.

Application Examples

■When using standard types with built-in check mechanism (MR052, MR102)



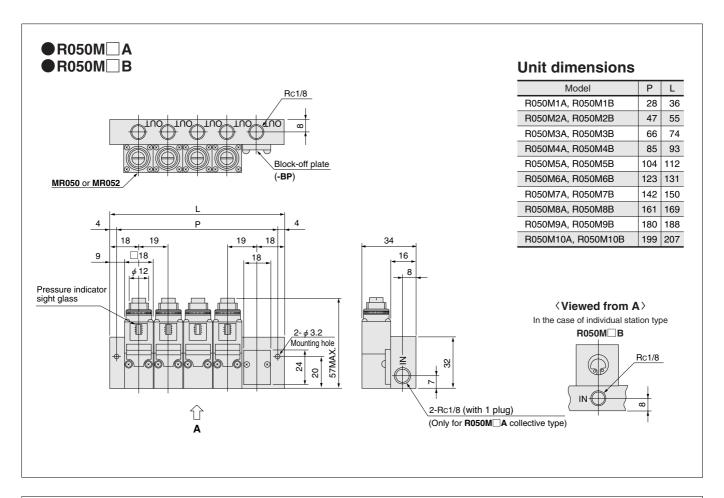

High-relief type (HR100)

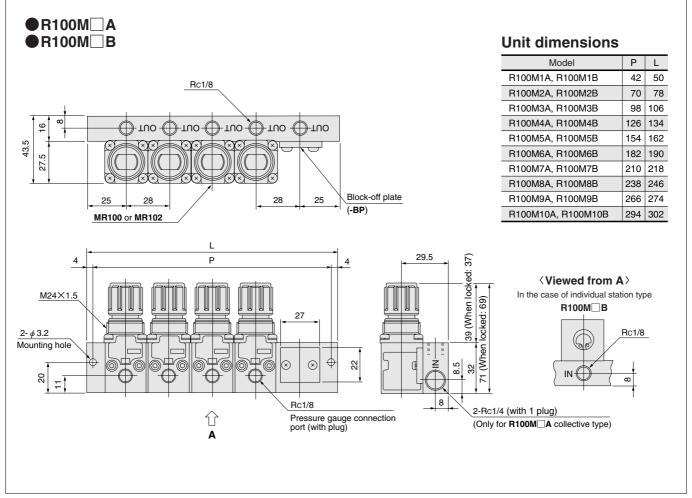
For one HR100 unit, use a cylinder with bore size of 32mm and stroke of 200mm or less.

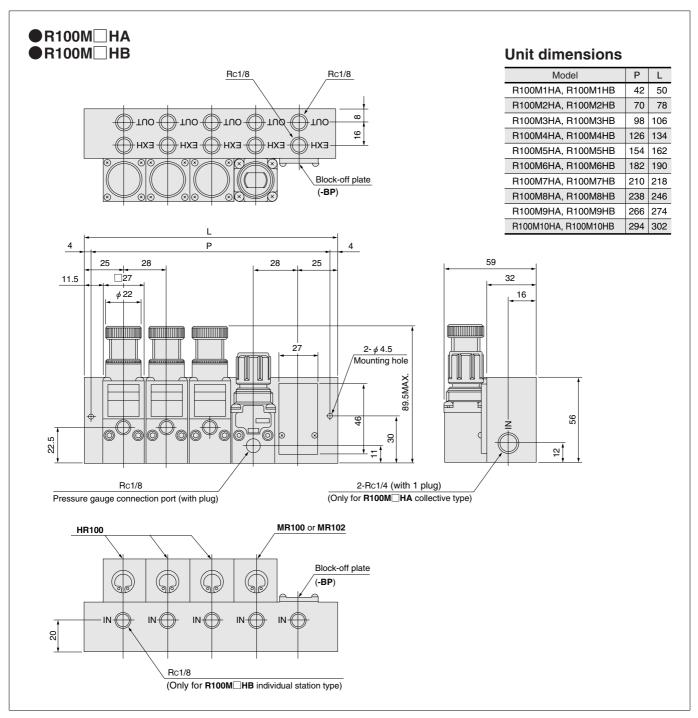
Balancer, tension control, or compressed pressure control

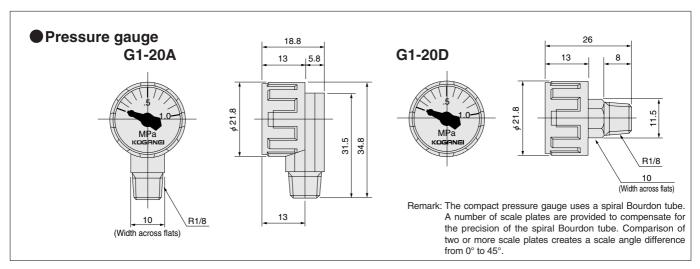
Differential pressure operation

Speed control
Usable only with cylinders with bore
size of 32mm [1.26in.] and 40mm
[1.57in.] equivalent.


●Rapid speed control


HR100


HR100


HR100

Note: As the high-relief type HR100 has a relief starting pressure of about 0.03MPa [4psi.], it cannot be used for high-precision control.

Pressure regulating

- 1. Install a pressure gauge to regulate pressure. In the R050 series, there is a pressure indicator sight glass. Use it to measure as a guide.
- 2. To regulate the pressure in the MR100 and MR102, pull out the knob firmly. Turning it to the right (clockwise) to increase the pressure, and to the left (counterclockwise) to reduce the pressure. After regulating pressure, push the knob back into the body and lock it in place.

Caution: The high-relief type HR100 has a relief starting pressure of about 0.03MPa [4psi.], this prevents use for high-precision control.

Manifold

Piping

- 1. Always thoroughly blow off (use compressed air) the piping before connecting it to the valve. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.
- 2. When using the P port collective type, use P port piping of sufficiently large size, and supply air from the P ports on both sides as much as possible.
- 3. The high-relief type cannot use the R (relief) port under choked conditions. Also, if installing piping or a muffler, keep the exhaust resistance as low as possible. For the R (relief) port piping, use a tube of at least ϕ 6×4 (when collective exhaust for two or more units, then ϕ 10×8 or larger). Use a tube as short as possible. Avoid using a tube of length 2m [6.6ft.] or more.

Caution: When mounting the pressure gauge, use a wrench to tighten the hexagonal portion of the piping connection port, and avoid applying any force to the gauge.

Block-off plate

Use a block-off plate (Order Code: R050M□-BP, R100M□-BP)

to block the stations that are not being used.

General precautions

Media

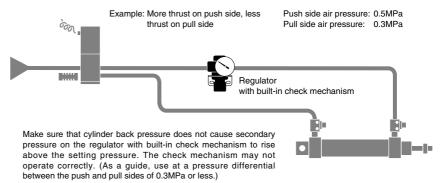
- 1. Use air for the media. For the use of any other media, consult us.
- 2. Use clean air that does not contain deteriorated compressor oil or other contaminants. Install an air filter (with filtration of a minimum 40μ m) close to the valve to eliminate any airline collected liquid or dust. Moreover, clean the air filter at regular intervals.

Lubrication

While the system can be used without lubrication, if lubricating the actuators etc. is required, use Turbine Oil Class 1 (ISO VG32) or equivalent.

Avoid using spindle oil or machine oil.

Atmosphere

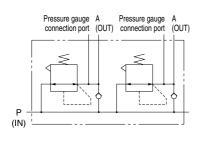

- 1. The product cannot be used when the media or the ambient atmosphere contains any of the substances listed below.
 - Solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.
- 2. If using in locations subject to dripping water or oil, etc., or to large amounts of dust, use something to cover and protect the unit.

System Upgrade Using a Regulator with Built-In Check Mechanism

The regulator with built-in check mechanism is equipped with a built-in check valve that opens when the primary pressure falls off, causing the pressure balance to break and simultaneously opening the main valve to relieve the secondary pressure to the primary side.

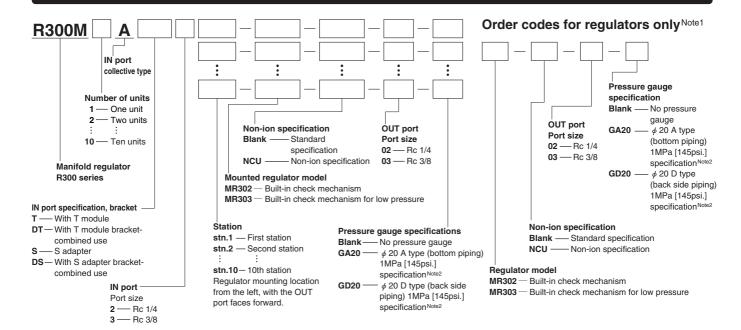
Changing push side and pull side thrust

The thrust on an air cylinder's push side and pull side can be changed easily. Cylinders can be operated at low pressure on the side where thrust is not required, allowing reduction of air consumption.


MANIFOLD REGULATORS

R300M A

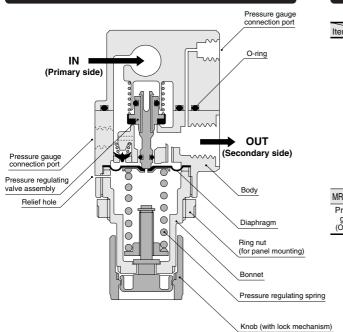
- Regulation of supply pressure can be checked at a single location for all lines.
- Stable pressure regulation and large exhaust flow rate in a compact body.
- Push lock type regulator knob for light, smooth pressure regulation.


Symbol

Specifications

Item	Model	MR302	MR303 (low pressure)	
Media		A	ir	
Port size	Rc	1/4,	3/8	
Pressure setting range	MPa [psi.]	0.05~0.83 [7~120]	0.05~0.25 [7~36]	
Maximum operating pressure	MPa [psi.]	0.93 [135]		
Proof pressure	Proof pressure MPa [psi.]		1.47 [213]	
Operating temperature range (atmosphere ar	nd media) °C [°F]	5~60 [4	1~140]	
Lubrication		Not required		
Materials		Aluminum die-casting		
Check mechanism		As standard		

Order Codes

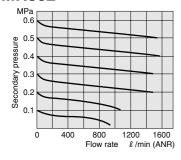


Notes: 1. Cannot be used as a single unit.

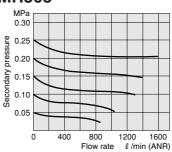
The bracket modules are required for additional units, order separately.

2. For the pressure gauge specifications, order codes, and dimensions, see p.171.

Inner Construction



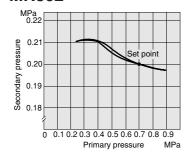
Mass


					kg [lb]		
Item	Model	R300M□AT	R300M ADT	R300M□AS	R300M□ADS		
	1	0.58 [1.28]	0.74 [1.63]	0.36 [0.79]	0.52 [1.15]		
ठ	2	0.84 [1.85]	1.00 [2.21]	0.61 [1.35]	0.77 [1.70]		
units	3	1.10 [2.43]	1.26 [2.78]	0.87 [1.92]	1.03 [2.27]		
fold	4	1.34 [2.95]	1.52 [3.35]	1.13 [2.49]	1.29 [2.84]		
iani	5	1.62 [3.57]	1.78 [3.92]	1.39 [3.06]	1.55 [3.42]		
of manifold	6	1.87 [4.12]	2.11 [4.65]	1.65 [3.64]	1.89 [4.17]		
	7	2.13 [4.70]	2.46 [5.42]	1.91 [4.21]	2.23 [4.92]		
Number	8	2.39 [5.27]	2.71 [5.98]	2.17 [4.78]	2.49 [5.49]		
Ż	9	2.65 [5.84]	2.97 [6.55]	2.43 [5.36]	2.75 [6.06]		
	10	2.91 [6.42]	3.23 [7.12]	2.69 [5.93]	3.01 [6.64]		
MR30 (si	ngle unit)	0.20 [0.44]					
Pressure	-GA20	0.007 [0.015]					
gauge (Optional)	-GD20		0.007 [0.015]				

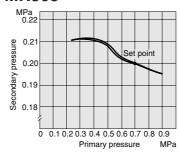
Flow Rate Characteristics

MR302

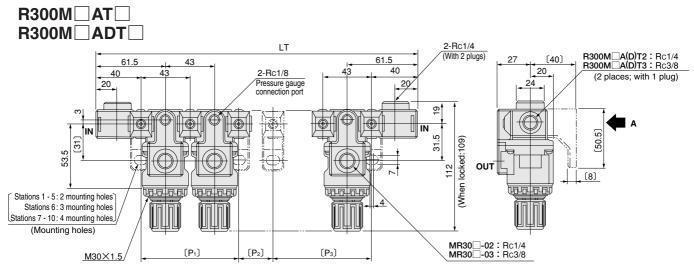
MR303



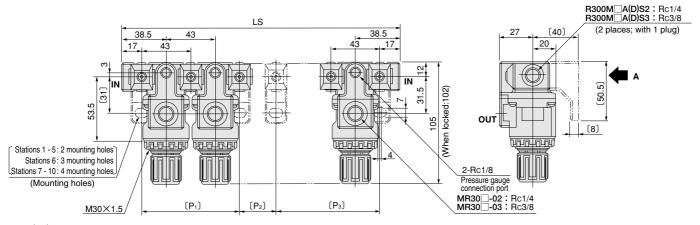
Remark: Graphs show flow rate characteristics when the primary pressure is fixed at 0.7MPa [102psi.].


1MPa = 145psi. $1 \ell/min = 0.0353ft^3/min.$

Pressure Characteristics

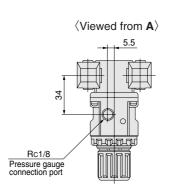

MR302

MR303



1MPa = 145psi.

〔 〕 shows when R300M□ADT□ is used.


R300M AS R300M ADS

[] shows when $\textbf{R300M} \square \textbf{ADS} \square$ is used.

Unit dimensions

No. of units Code	LT	LS	P 1	P ₂	Рз
1	123	77	_	_	_
2	166	120	_	_	_
3	209	163	_	_	_
4	252	206	_	_	_
5	295	249	_	_	_
6	338	292	129	_	129
7	381	335	86	129	86
8	424	378	86	172	86
9	467	421	129	129	129
10	510	464	129	172	129

Filter Regulator, Regulator, Precision Regulator, Manifold Regulator, and High-relief Regulator

Mounting and piping

General overview for regulators

In regulator configurations (with the exception of types with built-in check mechanism), the OUT port (secondary) pressure may not be exhausted to the IN port (primary) side even when the IN port pressure is 0MPa. To ensure that exhaust is performed, either use a type with built-in check mechanism, or install a check valve alongside. If a regulator with built-in check mechanism installed after the solenoid valve for cylinder pressure adjustment performed, make sure that cylinder back pressure does not cause secondary pressure on the regulator with built-in check mechanism to rise above the set pressure. The check mechanism may not operate correctly. (As a guide, use at a pressure differential between the push and pull sides of 0.3MPa or less.)

Also, because regulator (with the exception of the High-relief Regulator) relief ports are smaller than the diameter of the piping port, they may not be able to respond to sudden increases in pressure on the OUT port (secondary) side. For situations where pressures can rise sharply due to a force being applied to the cylinder externally, either use a High-relief Regulator or set the relief valve to OUT.

Precision Regulator

- 1. If mounting the Precision Regulator as a single unit, use a bracket (optional). A ring nut for panel mounting can also be used.
- 2. When piping to the Precision Regulator, position the piping so that the air supply side connects to the IN port and the actuator side connects to the OUT port. To prevent the fitting on the OUT port side from interfering with the damper tube, use piping with inner diameter at least 3mm [0.12in.] or more.

Cautions: 1. The regulator cannot be used with the IN port and the OUT port in the opposite positions.

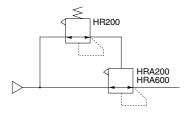
- 2. When mounting a fitting on the OUT port, be careful to avoid damaging the damper tube. In addition, avoid using a plug or a fitting with too small inner diameter in the OUT port. Bending the damper tube or blocking the hole could damage the precision regulator function, preventing accurate regulating pressure.
- Avoid a mounting position that blocks the relief hole. Blocking the relief hole could prevent regulating pressure.

Manifold Regulator

- 1. Use sufficiently large IN port piping, and supply via the IN ports at both manifold ends as much as possible. Moreover, when using five or more units on a manifold, mount a T module somewhere in the middle of the units, and supply via the IN ports in at least three different locations.
- To stabilize secondary pressure, ensure a sufficiently large pressure differential (0.3MPa [44psi.] MIN.) between the IN port pressure and OUT port pressure.

High-relief Regulator

- The High-relief Regulator's IN port (primary side) is on the top surface of the body, where the arrow ▶ mark is located.
- 2. The High-relief Regulator can be mounted as a module with any equipment in the air preparation Multi Series. Module formation and equipment compatibility for HR200 and HRA200 is the same as the 150 series, and for HR600 and HRA600, the same as the 600 series.
- **3.** For single unit mounting, use brackets (order code :-**B**). A ring nut for panel mounting can also be used.
- 4. When mounting a pressure gauge, never grab the pressure gauge body for tightening. Always use a wrench on the square section around the connection port to tighten.
- When mounting a muffler or exhaust filter on the EXH port, use the following table to select the type.


Model	Recommended muffler, exhaust filter
HR200 HRA200	KM-22, KM-23 EF300, EF600, EF800
HR600	KM-31
HRA600	EF300, EF600, EF800

For details, see p.549 and 552.

- 6. While any mounting direction is acceptable, mounting with the EXH port pointing straight up could result in noisy operation. In this case, change the pressure setting, increase the exhaust volume, or perform some other preventive measures.
- 7. If using a mounting ring to mount the regulator, use a mounting torque of 980.7N·cm [86.7in·lbf] or less.

Cautions: 1. Avoid operating methods that involve setting a valve on the primary side of the High-relief Regulator and repeatedly switching the primary pressure.

- 2. If mounting a muffler, etc., on the EXH port, use a tightening torque for HR200 and HRA200 of 294.2N-cm [26.0in-lbf] or less, and for HR600 and HRA600, 490.3N-cm [43.4in-lbf] or less. When mounting, always use a wrench on the hexagonal section of the exhaust plug. Avoid using steel piping to connect the EXH port.
- 3. In the external pilot type, exhausting primary pressure while supplying pilot air could cause damage to the diaphragm. For this reason, exhaust the primary side of the regulator that controls pilot pressure, and the primary side of the external pilot type at the same time.

4. To avoid interfering with the piping volume, select a regulator with a large relief flow rate for the pilot regulator to be used for the external pilot type. In addition, do not allow the pilot air piping length to exceed the values shown in the table below.

O.D ×I. D.mm [in.]	Piping length m [ft.]
4×2 [0.157×0.079]	2 [6.6]
6×4 [0.236×0.157]	20 [65.6]
8×6 [0.315×0.236]	50 [164]

Pressure regulation

Caution: Perform the setting while checking the primary pressure and secondary pressure gauge displays. Rotating the knob too far could cause damage to the internal parts. Be particularly careful not to rotate it too far during depressurization, since time is required for relief.

Filter Regulator, Regulator, Manifold Regulator

Perform pressure regulation by pulling out the knob firmly. Rotating it to the right (clockwise direction) increases the pressure, and rotating to the left (counterclockwise direction) reduces the pressure. After regulating pressure, push the knob back into the body and lock it in place.

Cautions: 1. Do not attempt to rotate the knob while in the locked position.

2. In the FR150 and R150 series, vibration noise can occur when the pressure differential between the primary pressure and setting pressure is large (0.7MPa [102psi.] or more). In this situation, reduce the pressure differential (0.5MPa [73psi.] or less).

Precision Regulator, High-relief Regulator

Perform regulating pressure by pulling out the knob firmly. Rotating it to the right (clockwise direction) increases the pressure, and rotating to the left (counterclockwise direction) reduces the pressure. After regulating pressure, push the knob back into the body and lock it in place.

Remark: When regulating pressure, connect a pressure gauge of a class JIS 1.5 or equivalent to the Precision Regulator's pressure gauge connection port (Rc1/4).

Cautions: 1. To maintain accurate pressure adjustment conditions while locked, the Precision Regulator knob includes a free (neutral) state between the lock state and pressure adjustment state. To switch between the regulating pressure and lock states, pull the knob firmly out or push it in until a clicking sound shows that it has firmly arrived in the lock state or pressure adjustment state.

- 2. The Precision Regulator is a bleed type, which means that a slight amount of air constantly bleeds out of the bleed hole while the secondary side is undergoing pressure adjustment. This is a normal situation.
- The internal pilot type uses a metal contact seal on the pilot regulator portion that causes it to bleed a slight amount of air. This is a normal situation.

Residual Pressure Exhaust Valve

Mounting and piping

- When mounting the Residual Pressure Exhaust Valve as a single unit, use either a mounting thread on the R port side or a bracket (optional). If using steel piping, the piping itself can serve as a support.
- 2. Connect the piping for the Residual Pressure Exhaust Valve so that the P port is on the primary (media) side and the A port is on the mechanical device side. If using as a 2-port valve, use a Rc1/4 plug to block the R port.

Cautions: 1. The unit cannot be used with the P port and A port in reversed positions.

If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use something to cover and protect the unit.

Switching valves

To switch between air supply or exhaust, rotate the knob by 90 degrees. Rotation to the left (counterclockwise direction) switches to the air supply state, while rotating to the right (clockwise direction) switches to the exhaust state. As there is no neutral position (where the P port air would return back to A or R), slowly rotating the knob can slowly increase the supply or exhaust volume. To determine the current valve state, check a display window on the side of the knob.

Caution: After switching the knob firmly by 90 degrees, always check that it is locked in place.

General precautions

- Always thoroughly blow off (use compressed air) the tubing before piping. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.
- **2.** Use clean air for the media. Install an air filter (with filtration of a minimum 5μ m). For the use of any other media, consult us.
- 3. The product cannot be used when the media or the ambient atmosphere contains any of the substances listed below. Organic solvents, phosphorate acid ester type hydraulic oil, sulphur dioxide, chlorine gas, acids, or alkali.
- **4.** If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use something to cover and protect the unit.