

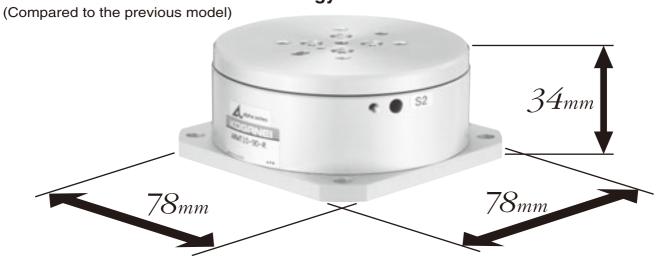
KOGANEI

ACTUATORS GENERAL CATALOG

ROTARY STAGE RWT SERIES

CONTENTS

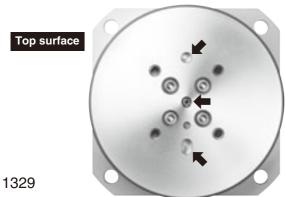
Features —	— 1329
Operation Principles —	— 1331
Handling Instructions and Precautions —	<u> </u>
Air Flow Rate and Air Consumption ————————————————————————————————————	— 1333
Selection —	<u> </u>
Specifications, Order Codes —	<u> </u>
Inner Construction, Major Parts and Materials —	— 1343
Dimensions —	— 1344
Sensor Switch ————————————————————————————————————	<u> </u>

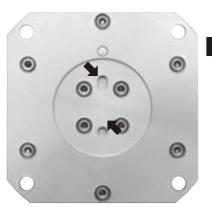

Air-operated index table

An air signal and ratchet mechanism ensure that the table rotates at a fixed angle and fixed direction. For operation principles, see p.1331.

Thin, lightweight, compact, and high torque

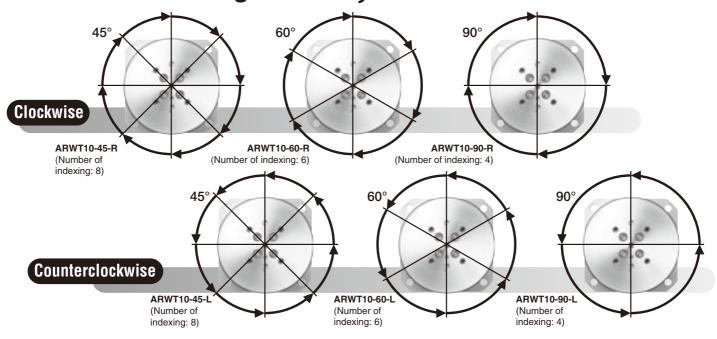
1.0N·m [0.74ft·lbf] (At operating air pressure 0.5MPa [73psi.])


10 times increase of allowable energy



Sensor switch for operations check is optional.

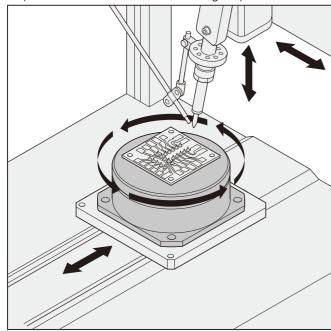
Locating dowel pin holes placed on the top of the table and bottom of the body

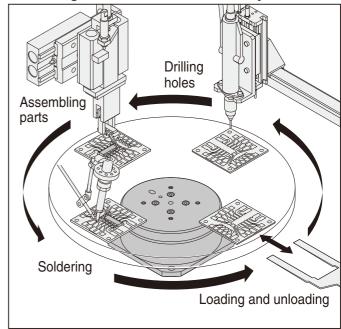


Bottom surface

Two rotation directions:

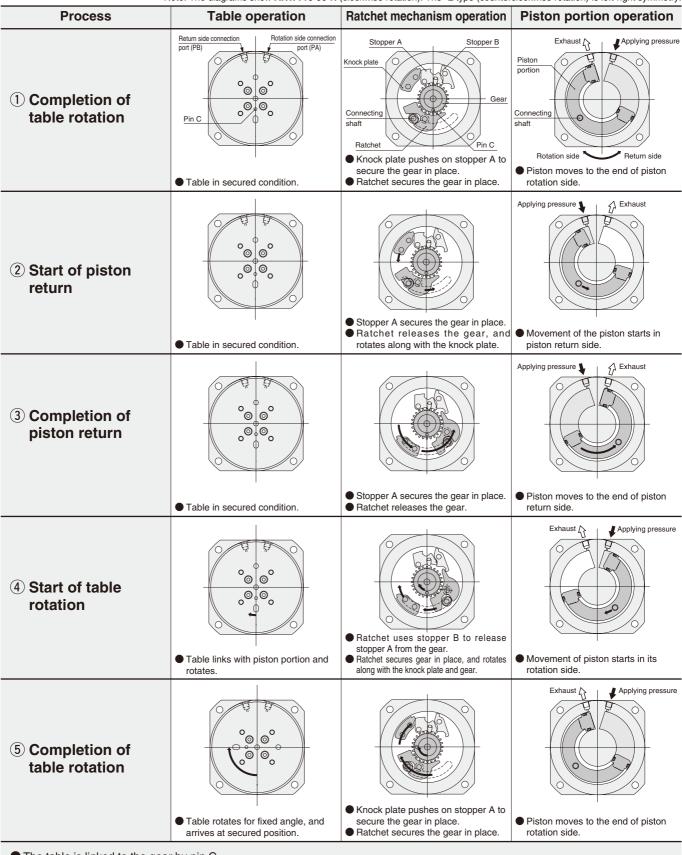
Rotation to the right (clockwise), Rotation to the left (counterclockwise)


Three rotation angles: 45°, 60° and 90°


Application example

Change the orientation of the circuit board and perform soldering.

(In combination with Creseed soldering unit)


Indexing table for automatic assembly

ROTARY STAGE RWT SERIES

Rotary Stage uses air signal and ratchet mechanism to ensure that the table rotates at a fixed angle and fixed direction.

Note: The diagrams show ARWT10-90-R (clockwise rotation). The -L type (counterclockwise rotation) is left-right symmetry.

- The table is linked to the gear by pin C.
- The ratchet and knock plate are located on the same plate, and move in tandem.
- The ratchet is linked by a connecting shaft to the piston.
- The rotary stage RWT series goes through steps ①→②→③→④→⑤ above to complete 1 cycle.

Notes: 1. When operating the Rotary Stage RWT series, always start from the step " 1 Completion of table rotation."

- 2. If the Rotary Stage RWT series stops while partway through rotation due to a drop in pressure, etc., always start from "3 Completion of piston return."
- When connecting the Rotary Stage RWT series to a valve, connect the normally open side to the rotation-side connection port.

General precautions

Media

- Use air for the media. For the use of any other media, consult us.
- 2. Air used for the actuator should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 μ m) near the actuator or valve to remove collected liquid or dust. In addition, drain the air filter periodically.

Piping

- Always thoroughly blow off (use compressed air) the tubing before connecting it to the actuator. Entering metal chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.
- **2.** When screwing piping or fittings into the actuator, tighten to the appropriate tightening torque shown below.

Connecting thread	Tightening torque N⋅cm [in⋅lbf]	
M5×0.8	157 [13.9]	

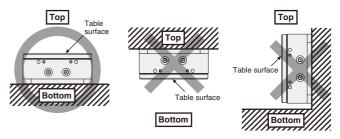
Lubrication

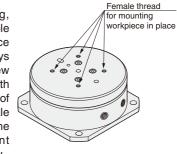
The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent. Avoid using spindle oil or machine oil.

Atmosphere

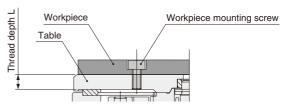
If using in locations subject to dripping water, dripping oil, etc., use a cover to protect the unit. Also, avoid dew condensation.

Operation


When starting up operations of a device and the actuator by supplying compressed air rapidly, it could not control the speed due to the construction of the actuator, resulting in damage to the device and actuator. When shutting off compressed air, shut off with the table in a completely rotated state, and check that the stopper has activated. If for some reason the compressed air is shut off while the Rotary Stage is partway through a rotation, apply air pressure through the return side connection port (PB port) and continue applying back pressure in the operation to use. (See the operating principles on p.1331.)

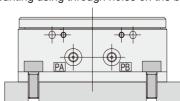

Mounting

Mounting


 Horizontal mounting (face up on the table surface) is the only acceptable mounting direction. Any other mounting directions will cause the inner parts to disengage, resulting in damage or defective operation.

- The mounting surface should always be flat. Twisting or bending during mounting may result in air leaks or improper operation.
- 3. Care should be taken that scratches or dents on the actuator's mounting surface may damage its flatness.
- **4.** Take some locking measures when shocks or vibrations might loosen the bolts.
- 5. For workpiece mounting, female threads are available for installing the workpiece in place on the table. Always use bolts so that the screw length is less than the depth of the female thread. Use of longer bolts than the female thread will interfere with the inner parts, and prevent them from working properly.

When mounting the workpiece, tighten the bolts within the range of the tightening torque.



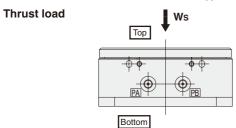
Model	Screw size	Thread depth L (mm [in.])	Maximum tightening torque (N·m) [ft·lbf]
ARWT10	M4×0.7	5 [0.197]	1.50 [1.11]

Caution: When using a bolt to mount the workpiece in place on the table, hold either the table or the workpiece during operation. Holding the body for tightening will apply excessive moment to the stopper or gear, etc., damaging them.

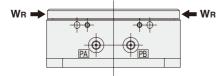
6. When mounting the Rotary Stage RWT series, tighten screws applying torque within the allowable range.

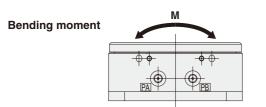
Mounting using through holes on the body

Model	Mounting	Screw size	Maximum tightening torque (N·m) [ft·lbf]
ARWT10	Through hole	M5×0.8	3.0 [2.2]


Handling Instructions and Precautions

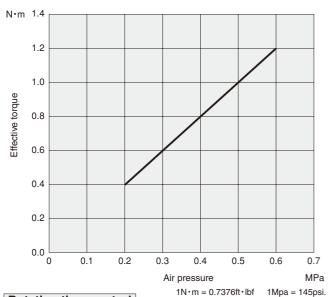
Allowable load


Item Model	ARWT10
Allowable thrust load Ws (N [lbf.])Note1	50 [11.2]
Allowable radial load W _R (N [lbf.]) ^{Note2}	0 [0]
Allowable bending moment M (N·m [ft·lbf])	1.5 [1.1]


Notes: 1. The thrust load has directionality. (See the diagram below.)
Do not apply it to the table surface in the up direction.

2. Cannot be used where a radial load is applied.

Radial load



Effective torque

N·m [ft·lbf]

	Air pressure MPa [psi.]								
Model	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6
	[29]	[36]	[44]	[51]	[58]	[65]	[73]	[80]	[87]
ARWT10	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2
	[0.30]	[0.37]	[0.44]	[0.52]	[0.59]	[0.66]	[0.74]	[0.81]	[0.89]

Rotation time control

For control of rotation time, a sequence control using sensor switches at both stroke ends for detection is recommended. If using timer control, caution should be exercised for the following points.

- For the rotation side, check that the rotation is completed all the way to the end point, and that the stopper positively activates.
- Because no visual check is possible for the return side, set the time to 0.2 second or more, without using a speed controller for adjustment.

Air Flow Rate and Air Consumption

Finding the air flow rate (for selecting F.R.L., valves, etc.)

$$Q_1 = \left(6.4 \times \frac{60}{t} \times \frac{P + 0.1013}{0.1013} + 200^{**}\right) \times 10^{-3}$$

$$Q_1' = \left(0.391 \times \frac{60}{t} \times \frac{P' + 14.696}{14.696} + 12.20^*\right) \times \frac{1}{1728}$$

• Finding the air consumption

P: Pressure

$$Q_2 = \left(V \times n \times \frac{P + 0.1013}{0.1013} + 200^*\right) \times 10^{-3}$$

 $\begin{array}{lll} Q_1: \mbox{ Required air flow rate for rotary stage} & \ell \ /\mbox{min (ANR)} \\ Q_2: \mbox{ Air consumption of rotary stage} & \ell \ /\mbox{min (ANR)} \\ \mbox{ V: Cylinder capacity of rotary stage per cycle} & \mbox{cm}^3 \end{array}$

MPa

t: Time required for 1 cycle of the rotary stage
n: Number of operations per minute

stage per system
stage

$$Q_2' = \left(V' \times n \times \frac{P' + 14.696}{14.696} + 12.20^*\right) \times \frac{1}{1728}$$

Q₁': Required air flow rate for rotary stage ft³/min. (ANR)*
Q₂': Air consumption of rotary stage ft³/min. (ANR)*
V': Cylinder capacity of rotary stage per cycle in³

t: Time required for 1 cycle of the rotary stage
n: Number of operations per minute

P': Pressure

sec.

cycle/min.

psi.

*: The Rotary Stage RWT series may leak air when operated at less than 200cm³/min [12.20in³/min.] (ANR), because of the cylinder structure.

 Cylinder capacity of rotary stage per cycle
 cm³ [in³]

 Model
 ARWT10-45
 ARWT10-60
 ARWT10-90

 Cylinder capacity V [V']
 9.6 [0.586]
 10.6 [0.647]
 12.8 [0.781]

Note: One cycle of the Rotary stage consists of movement that returns the device to the return position in preparation for traveling the internal piston by an air signal, and sending the table as far as a fixed angle. For table rotation and piston movement, see p.1331.

^{*}Refer to p.54 for an explanation of ANR.

Caution: For the load and rotation time, follow the below "Model selection procedure" to select within the range of specified values. Moreover, about 80% of the allowable values is recommended to use in the application. By using these values, adverse effects on cylinders and guides can be a minimum.

• Model selection procedure

1. Check the application conditions

Check the following items 1 ~4

- 1) Rotation angle (45°, 60° and 90°) and rotation direction (clockwise or counterclockwise rotation).
- (2) Rotation time (s)
- 3 Applied pressure (MPa)
- 4 Workpiece shape and materials
- ⑤ Mounting direction (stance)

2. Check the rotation time

Check the rotation time in 1—2 is within the rotation time adjustment range in the specification.

Angle	Rotation time (s)
45°	0.1~0.5
60°	0.13~0.67
90°	0.2~1.0

Note: The rotation time is the value for 1 complete rotation operating smoothly with applying no load.

3. Check torque

Find the torque TA required for rotating the work.

 $T_A = I \dot{\omega} K$ $T_A : Torque (N \cdot m)$

I: Mass moment of inertia (kg·m²)

Use the formulas on p.1338~1341 to find.

 $\dot{\omega}$: Uniform angular acceleration (rad/s²)

K: Marginal coefficient 5

 θ : Rotation angle (rad)

45°→0.79rad

60°→1.05rad

90°→1.57rad

t: Rotation time (s)

For the applied pressure checked in 1-3 above, use the effective torque table or graph on p.1333 to check that the required torque TA is obtained.

4. Check kinetic energy

If kinetic energy exceeds the allowable energy, the actuator could be damaged. Always ensure that the energy lies within the allowed level. For the allowable kinetic energy, see Table 1.

Finding the kinetic energy.

 $E = \frac{1}{2} \times I \times \omega^2$

E < Ea

E: Kinetic energy (J)

I: Mass moment of inertia (kg·m²) Use the formulas on p.1338~1341 to find.

 ω : Angular velocity (rad/s)

 θ : Rotation angle (rad) 45°→0.79rad

60°→1.05rad

90°→1.57rad

t: Rotation time (s)

Ea: Allowable energy

... See Table 1.

Table 1. Allowable energy Fa

Model	Allowable energy (J)
ARWT10	0.050

• Model selection procedure

1. Check the application conditions

Check the following items 1 ~4

- 1) Rotation angle (45°, 60° and 90°) and rotation direction (clockwise rotation or counterclockwise rotation).
- ② Rotation time [sec.]
- (3) Applied pressure [psi.]
- 4 Workpiece shape and materials
- 5 Mounting direction (stance)

2. Check the rotation time

Check the rotation time in 1-2 is within the rotation time adjustment range in the specification.

Angle	Rotation time [sec.]
45°	0.1~0.5
60°	0.13~0.67
90°	0.2~1.0

Note: The rotation time is the value for 1 complete rotation operating smoothly with applying no load.

3. Check torque

Find the torque T'A required for rotating the work.

 $T'_A = I'\dot{\omega} K$ $T'_A : Torque [ft \cdot lbf]$

I': Mass moment of inertia [lbf·ft·sec.2] Use the formulas on p.1338~1341 to find.

 $\dot{\omega}$: Uniform angular acceleration [rad/sec.2]

K: Marginal coefficient 5

 θ : Rotation angle [rad]

45°→0.79rad

60°→1.05rad

90°→1.57rad

t: Rotation time [sec.]

For the applied pressure checked in 1-3 above, use the effective torque table or graph on p.1333 to check that the required torque T'A is obtained.

4. Check kinetic energy

If kinetic energy exceeds the allowable energy, the actuator could be damaged. Always ensure that the energy lies within the allowed level. For the allowable kinetic energy, see Table 1.

Finding the kinetic energy.

 $E' = \frac{1}{2} \times I' \times \omega^2 \qquad E' : \text{Kinetic energy [ft·lbf]}$

E' < E'a

I': Mass moment of inertia [lbf·ft·sec.2] Use the formulas on p.1338~1341

to find.

 ω : Angular velocity [rad/sec.]

 θ : Rotation angle [rad] 45°→0.79rad

> 60°→1.05rad 90°→1.57rad

t: Rotation time [sec.]

E'a: Allowable energy

... See Table 1.

Table 1. Allowable energy E'a

Model	Allowable energy [ft·lbf]
ARWT10	0.037

Selection

5. Check load ratio

Check that the total sum of the load ratio does not exceed 1. For the allowable load, see Table 2. (For the load direction, see the allowable load on p.1333.)

$$\frac{W_{\text{S}}}{W_{\text{S MAX}}} + \frac{M}{M_{\text{MAX}}} \le 1$$

Table 2. Allowable load

Model	Thrust load	Moment	
Model	Ws MAX (N)	M MAX (N·m)	
ARWT10	50	1.5	

6. Judgement whether the unit is usable or not

The unit is usable if it satisfies both 4. Kinetic energy and 5. Load ratio.

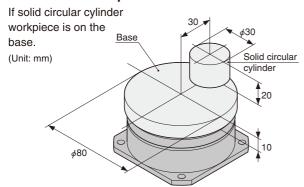
Total sum of load ratio ≤ 1

5. Check load ratio

Check that the total sum of the load ratio does not exceed 1. For the allowable load, see Table 2. (For the load direction, see the allowable load on p.1333.)

$$\frac{W's}{W's\,_{MAX}} + \frac{M'}{M'\,_{MAX}} \le 1$$

Table 2. Allowable load


Model Thrust load W's MAX [lbf.]		Moment M'MAX [ft • lbf]	
ARWT10	11.2	1.1	

6. Judgement whether the unit is usable or not

The unit is usable if it satisfies both 4. Kinetic energy and 5. Load ratio.

Total sum of load ratio ≤ 1

Calculation example

1. Check the application conditions

1) Rotation angle: 90°

2 Rotation time: 0.5 (s)

3 Applied pressure: 0.5 (MPa)

4 Workpiece shape…as shown in the above

Workpiece materials

···Base: Aluminum alloy A5056

(Specific gravityNote=2.64×103 kg/m3)

···Solid circular cylinder: Aluminum alloy A5056

(Specific gravity Note =2.64 \times 10 3 kg/m 3)

5 Mounting direction (stance): Horizontal

Note: Since the specific gravity can vary depending on the alloy, check the specific gravity of the metal being used, and then perform the calculation

2. Check the rotation time

The rotation time is $0.5s/90^{\circ}$, which is within the range of $0.2\sim1.0s/90^{\circ}$, and satisfactory.

3. Check torque

Firstly calculate the mass moment of inertia.

Base

$$m_1 = \frac{\pi}{4} \times 0.08^2 \times 0.01 \times 2.64 \times 10^3 = 0.133 \text{ (kg)}$$

$$l_1 = \frac{0.133 \times 0.08^2}{2}$$

Solid circular cylinder

$$m_2 = \frac{\pi}{4} \times 0.03^2 \times 0.02 \times 2.64 \times 10^3 = 0.037$$
 (kg)

$$I_2 = \frac{0.037 \times 0.03^2}{8} + 0.037 \times 0.03^2$$

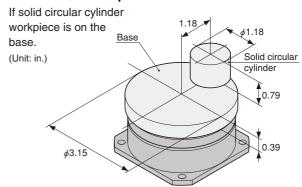
$$=0.37\times10^{-4} (kg \cdot m^2)\cdots (2)$$

From ① and ②, the total mass moment of inertia I is $I = I_1 + I_2$

$$=1.06\times10^{-4}+0.37\times10^{-4}$$

$$=1.43\times10^{-4} (kg \cdot m^2) \cdots 3$$

From the given conditions, $\theta = 90^{\circ}$, t = 0.5 (s) Therefore, uniform angular acceleration $\dot{\omega}$ is


$$\dot{\omega} = \frac{2 \times 1.57}{0.5^2} = 12.56 \text{ (rad/s}^2) \cdots \text{(4)}$$

From 3 and 4, the required torque TA is

$$T_A=1.43\times10^{-4}\times12.56\times5$$

The effective torque at 0.5MPa is 1.0 (N·m), and the torque is satisfactory.

Calculation example

1. Check the application conditions

 \bigcirc Rotation angle: 90°

② Rotation time: 0.5 [sec.]

3 Applied pressure: 73 [psi.]

4 Workpiece shape…as shown in the above

Workpiece materials

···Base: Aluminum alloy A5056

[Specific gravityNote=165lbf/ft.3]

···Solid circular cylinder: Aluminum alloy A5056

[Specific gravityNote=165lbf/ft.3]

5 Mounting direction (stance): Horizontal

Note: Since the specific gravity can vary depending on the alloy, check the specific gravity of the metal being used, and then perform the calculation.

2. Check the rotation time

The rotation time is $0.5 \text{sec.}/90^\circ$, which is within the range of $0.2 \sim 1.0 \text{sec.}/90^\circ$, and satisfactory.

3. Check torque

Firstly calculate the mass moment of inertia.

Base

$$W'_{1} = \frac{\pi}{4} \times \left(\frac{3.15}{12}\right)^{2} \times \left(\frac{0.39}{12}\right) \times 165 = 0.290 \text{ [lbf.]}$$

$$I'_{1} = \frac{0.290 \times (3.15/12)^{2}}{8 \times 32.2}$$

Solid circular cylinder

$$W'_{2} = \frac{\pi}{4} \times \left(\frac{1.18}{12}\right)^{2} \times \left(\frac{0.79}{12}\right) \times 165 = 0.082 \text{ [lbf.]}$$

$$I'_{2} = \frac{0.082 \times (1.18/12)^{2}}{8 \times 32.2} + \frac{0.082 \times (1.18/12)^{2}}{32.2}$$

From ① and ②, the total mass moment of inertia I' is $I'=I'_1+I'_2$

$$=7.76\times10^{-5}+2.77\times10^{-5}$$

From the given conditions, $\theta = 90^{\circ}$, t = 0.5 [sec.] Therefore, uniform angular acceleration $\dot{\omega}$ is

$$\dot{\omega} = \frac{2 \times 1.57}{0.5^2} = 12.56 \text{ [rad/sec?]} \cdots \text{(4)}$$

From ③ and ④, the required torque T'A is

$$T'_A = 1.05 \times 10^{-4} \times 12.56 \times 5$$

The effective torque at 73psi. is 0.74 [ft·lbf], and the torque is satisfactory.

Selection

4. Check kinetic energy

From the given conditions, $\theta = 90^{\circ}$, t = 0.5 (s) Therefore,

$$\omega = \frac{2 \times 1.57}{0.5} = 6.28 \text{ (rad/s)} \cdots \text{ }$$

From ①, kinetic energy E is

$$E = \frac{1}{2} \times 1.43 \times 10^{-4} \times 6.28^2 = 0.003 \text{ (J)} \cdots \text{?}$$

The allowable energy is 0.050 (J), and the kinetic energy is satisfactory.

5. Check load ratio

[Thrust load]

Total mass is

0.133 + 0.037 = 0.170 (kg)

Therefore,

Ws=0.170×9.8=1.666 (N)····1

[Moment]

Moment M₁ of the base is

$$M_1=0.133\times9.8\times0=0 \ (N\cdot m)\cdots 2$$

Moment M_2 of the solid circular cylinder is M_2 =0.037 \times 9.8 \times 0.03=0.011 (N·m) \cdots 3

From ② and ③, the total moment is M=0+0.011=0.011 (N·m)····④

From ① and ④, find the load ratio.

$$\frac{\text{Ws}}{\text{Ws max}} + \frac{\text{M}}{\text{M max}} = \frac{1.666}{50} + \frac{0.011}{1.5} = 0.04 < 1.0$$

The load ratio is less than 1.0, and satisfactory.

6. Judgement whether the unit is usable or not

Since kinetic energy and load ratio are both satisfied, the application is allowable.

4. Check kinetic energy

From the given conditions, $\theta = 90^{\circ}$, t = 0.5 [sec.] Therefore.

$$\omega = \frac{2 \times 1.57}{0.5} = 6.28 \text{ [rad/sec.]} \cdots \text{(1)}$$

From ①, kinetic energy E' is

$$E' = \frac{1}{2} \times 1.02 \times 10^{-4} \times 6.28^2 = 0.002 \text{ [ft·lbf]} \cdots \text{?}$$

The allowable energy is 0.037 [ft·lbf], and the kinetic energy is satisfactory.

5. Check load ratio

[Thrust load]

Total weight is

0.290+0.082=0.372 [lbf.]

Therefore,

W's=0.372 [lbf.]···①

[Moment]

Moment M'1 of the base is

$$M_1'=0.290\times0=0$$
 [ft · lbf]···②

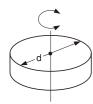
Moment M'2 of the solid circular cylinder is $M'_2=0.082\times\left(\frac{1.18}{12}\right)=0.008$ [ft·lbf]…③

From 2 and 3, the total moment is M'=0+0.008=0.008 [ft · lbf] $\cdots \textcircled{4}$

From 1 and 4, find the load ratio.

$$\frac{\text{W's}}{\text{W's MAX}} + \frac{\text{M'}}{\text{M'MAX}} = \frac{0.373}{11.2} + \frac{0.008}{1.1} = 0.04 < 1.0$$

The load ratio is less than 1.0, and satisfactory.


6. Judgement whether the unit is usable or not

Since kinetic energy and load ratio are both satisfied, the application is allowable.

■Diagram for calculating mass moment of inertia

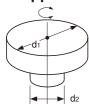
[When the rotation axis passes through the workpiece]

Disk

- Diameter Mass
- d (m) m (kg)
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{md^2}{8}$$

■Rotating radius

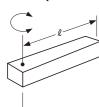

- Diameter d [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I' [lbf•ft•sec²]

$$I' = \frac{\text{wd}^2}{8 \times 32.2}$$

■Rotating radius

Remark: For sliding use, see separate materials.

Stepped disk

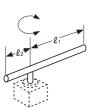

- Diameter
- d₁ (m) d₂ (m)
- ■Mass moment of inertia I (kg·m²) $I = \frac{1}{8} (m_1 d_1^2 + m_2 d_2^2)$
- ■Rotating radius

$$\frac{d_{1}^{2}+d_{2}^{2}}{8}$$

- ■Mass d₁ portion m₁ (kg) d₂ portion m₂ (kg)
- Diameter d1 [ft.] d₂ [ft.]
- ■Weight d₁ portion w₁ [lbf.] d₂ portion w₂ [lbf.]
- ■Mass moment of inertia I' [lbf·ft·sec.2]
 - $\frac{1}{8\times32.2}\times(w_1d_1^2+w_2d_2^2)$
- ■Rotating radius
 - $d_{1}^{2}+d_{2}^{2}$

Remark: The d2 portion can be negligible when it is much smaller than the d1 portion.

Bar (rotation center is at the edge)


- Bar length
- ℓ (m) Mass m (kg)
- ■Mass moment of inertia I (kg·m²)
 - $I = \frac{m \ell^2}{2}$
- ■Rotating radius
 - ℓ2

- Bar length ℓ [ft.] Weight
 - w [lbf.]
- ■Mass moment of inertia I' [lbf•ft•sec.²]

$$I' = \frac{w \ell^2}{3 \times 32.2}$$

■Rotating radius

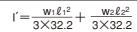
Slender rod

Rod length

Mass

ℓ1 (m) ℓ2 (m)

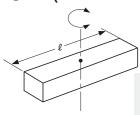
m₂ (kg)


- m₁ (kg)
- ■Mass moment of inertia I (kg·m²)

$$1 = \frac{m_1 \ell_{1^2}}{3} + \frac{m_2 \ell_{2^2}}{3}$$

■Rotating radius

$$\frac{\ell_1^2 + \ell_2^2}{3}$$


- Rod length ℓ1 [ft.] ℓ2[ft.]
- Weight w₁ [lbf.] w2 [lbf.]
- ■Mass moment of inertia I' [lbf·ft·sec.2]

■Rotating radius

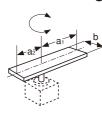
$$\frac{\ell_{1}^{2}+\ell_{2}^{2}}{3}$$

Bar (rotation center is through the center of gravity)

- ●Bar length●Mass
- ℓ (m) m (kg)
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{m \ell^2}{12}$$

■Rotating radius


$$\frac{\ell^2}{12}$$

- .] .]
- ■Mass moment of inertia I' [lbf·ft·sec.2]

$$I' = \frac{W \ell^2}{12 \times 32.2}$$

■Rotating radius

●Thin rectangular plate (rectangular solid)

- ●Plate length a₁ (m) a₂ (m)
- a₂ (m)

 Length of side b (m)
- ●Mass m₁ (kg)
 m₂ (kg)
- Plate length a₁ [ft.] a₂ [ft.]
- ●Length of side b [ft.] ●Weight w₁ [lbf.]

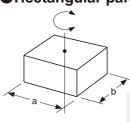
w₂ [lbf.]

■Mass moment of inertia I (kg·m²)

$$= \frac{m_1}{12} (4a_1^2 + b^2) + \frac{m_2}{12} (4a_2^2 + b^2)$$

■Rotating radius

$$\frac{(4a_{1}^{2}+b^{2})+(4a_{2}^{2}+b^{2})}{12}$$


■Mass moment of inertia I' [lbf•ft•sec?]

$$I' = \frac{\mathbf{w}_1}{12 \times 32.2} (4\mathbf{a}_1^2 + \mathbf{b}^2) + \frac{\mathbf{w}_2}{12 \times 32.2} (4\mathbf{a}_2^2 + \mathbf{b}^2)$$

■Rotating radius

$$\frac{(4a_1^2+b^2)+(4a_2^2+b^2)}{12}$$

Rectangular parallelepiped

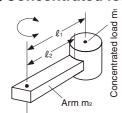
- ●Length of sides a (m) b (m)
- ●Mass m (kg)
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{m}{12}(a^2 + b^2)$$

■Rotating radius

- ●Length of sides a [ft.]
- b [ft.] ●Weight w [lbf.]
- ■Mass moment inertia I' [lbf·ft·sec.2]

$$I' = \frac{W}{12 \times 32.2} (a^2 + b^2)$$


■Rotating radius

Remark: For sliding use, see separate materials.

ROTARY STAGE RWT SERIES

Concentrated load

- Shape of concentrated load
- lacktriangle Distance to center of gravity of concentrated load ℓ_1 (m)
- Length of arm ℓ_2 (m)
- ■Mass of concentrated load m₁ (kg)
- ●Mass of arm m₂ (kg)

■Mass moment of inertia I (kg·m²)

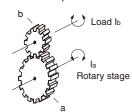
$$I=m_1k^2+m_1 \, \ell_1^2+\frac{m_2 \, \ell_2^2}{3}$$

Rotating radius: k² is calculated according to shape of the concentrated load.

Remark: When m_2 is much smaller than m_1 , calculate as $m_2 = 0$.

Shape of concentrated load

- Distance to center of gravity of concentrated load ℓ_1 [ft.]
- ●Length of arm ℓ₂[ft.]
- •Weight of concentrated load w₁ [lbf.]
- Weight of arm w₂ [lbf.]


■Mass moment of inertia I' [lbf·ft·sec?]

$$I' = \frac{w_1 k^2}{32.2} + \frac{w_1 \ell_{1^2}}{32.2} + \frac{w_2}{32.2} \times \frac{\ell_{2^2}}{3}$$

Rotating radius: k^2 is calculated according to shape of the concentrated load.

Remark: When w_2 is much smaller than w_1 , calculate as $w_2 = 0$.

■Gear Equation for calculating the load J_L with respect to Rotary Stage axis when transmitted by gears

- ●Gear Rotary Stage side a Load side b
- ●Inertia moment of load

N•m [

■Mass moment of inertia I (kg·m²)

Mass moment of inertia of load with respect to Rotary Stage axis

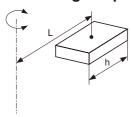
$$I_a = \left(\frac{a}{b}\right)^2 I_b$$

- ●Gear Rotary Stage side a Load side b
- Inertia moment of load

Mass

ft·lbf

■Mass moment of inertia I' [lbf•ft•sec?]


Mass moment of inertia of load with respect to Rotary Stage axis

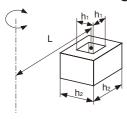
$$I_a = \left(\frac{a}{b}\right)^2 I_b$$

Remark: If the shapes of the gears are too large, the mass moment of inertia of the gears must be also taken into consideration.

[When the rotation axis is offset from the workpiece]

Rectangular parallelepiped

- Length of side h (m)
- Distance from rotation axis to the center of load L (m)
- Mass m (kg)
- Length of side h [ft.]
- Distance from rotation axis to the center of load L [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I (kg·m²)


$$I = \frac{mh^2}{12} + mL^2$$

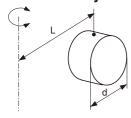
■Mass moment of inertia I' [lbf•ft•sec.2]

$$I' = \frac{wh^2}{32.2 \times 12} + \frac{wL^2}{32.2}$$

Remark: Same for cube.

Hollow rectangular parallelepiped

- Length of side h₁ (m)
- h₂ (m) Distance from rotation axis to the center of load L (m)
- m (kg)
- Length of side h₁ [ft.]
- h₂ [ft.] Distance from rotation axis to the center of load L [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I (kg·m²)

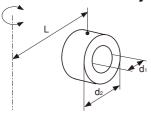

$$I = \frac{m}{12} (h_2^2 + h_1^2) + mL^2$$

■Mass moment of inertia I' [lbf·ft·sec.2]

$$I' = \frac{w(h_2^2 + h_1^2)}{32.2 \times 12} + \frac{wL^2}{32.2}$$

Remark: Cross-section is square only.

Circular cylinder


- Diameter
- d (m)
- Distance from rotation axis to the center of load L (m) Mass
 - m (kg)
- $I = \frac{md^2}{16} + mL^2$

■Mass moment of inertia I (kg·m²)

- Diameter d [ft.]
- ■Distance from rotation axis to the center of load L [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I' [lbf·ft·sec?]

$$I' = \frac{wd^2}{32.2 \times 16} + \frac{wL^2}{32.2}$$

Hollow circular cylinder

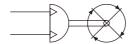
Diameter

Diameter

- d1 (m)
- d₂ (m)
- ■Distance from rotation axis to the center of load L (m) Mass

 - m (kg)
 - d1 [ft.]
 - d₂ [ft.]
- Distance from rotation axis to the center of load L [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{m}{16} (d_2^2 + d_1^2) + mL^2$$

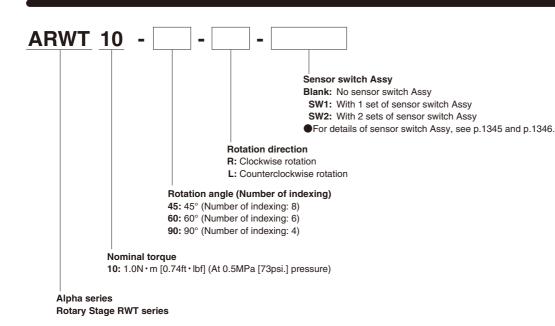

■Mass moment of inertia I' [lbf·ft·sec.2]

$$I' = \frac{W(d_2^2 + d_1^2)}{32.2 \times 16} + \frac{WL^2}{32.2}$$

Symbol

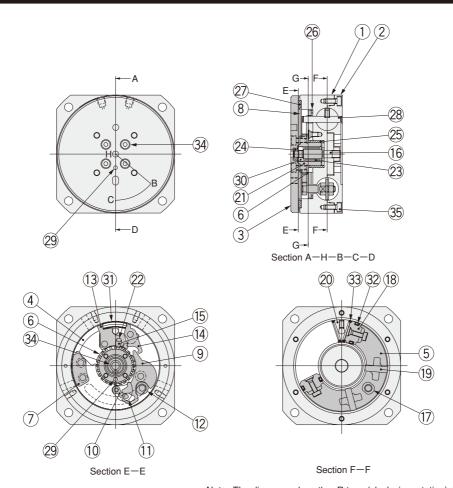
Specifications

Item Model	ARWT10-45-R	ARWT10-45-L	ARWT10-60-R	ARWT10-60-L	ARWT10-90-R	ARWT10-90-L	
Operation type	Double acting piston type (Gear and ratchet mechanism)						
Effective torqueNote1 N·m [ft·lbf]			1.0	1.0 [0.74]			
Media	Air						
Operating pressure range MPa [psi.]	0.2~0.6 [29~87]						
Proof pressure MPa [psi.]	0.9 [131]						
Operating temperature range °C [°F]	0~60 [32~140] (Dew condensation prohibited)						
Rotation direction	Clockwise	Counterclockwise	Clockwise	Counterclockwise	Clockwise	Counterclockwise	
Rotation angle	45°±0.2° 60°±0.2°			90°±0.2°			
Rotation time adjustment rangeNote 2 s/90°	0.2~1.0						
Allowable energy J [ft · lbf]	0.050 [0.037]						
Allowable thrust load N [lbf.]	50 [11.2]						
Allowable moment N·m [ft·lbf]	1.5 [1.1]						
Lubrication	Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)						
Port size	M5×0.8						


Notes: 1. Effective torque is the value obtained when the pressure is 0.5MPa [73psi.].

Mass

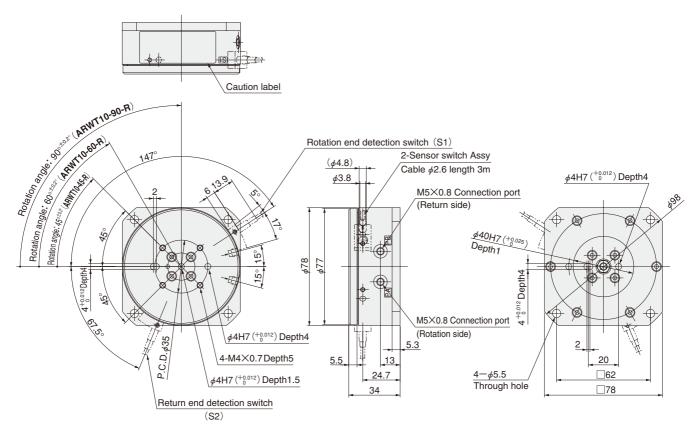
						g [oz.]
Model	ARWT10-45-R	ARWT10-45-L	ARWT10-60-R	ARWT10-60-L	ARWT10-90-R	ARWT10-90-L
Body	473 [16.68]		472 [16.65]		470 [16.58]	
Sensor switch Assy ^{Note}	30 [1.06]					


Note: Mass for 1 sensor switch Assy set (including 3m [118in.] cable)

Order Codes

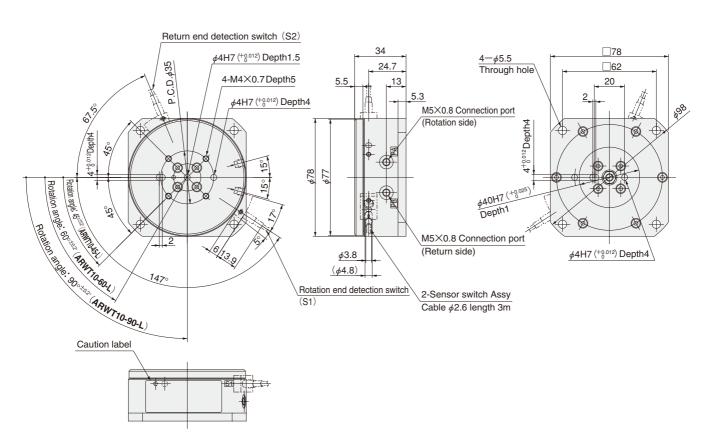
ROTARY STAGE RWT SERIES

^{2.} The rotation time adjustment range is the value for one complete rotation operating smoothly with applying no load.


Note: The diagrams show the -R type (clockwise rotation). The -L type (counterclockwise rotation) is left-right symmetry.

Major Parts and Materials

No.	Parts	Materials
IVO.		Materials
	Body A	Aluminum alloy (anodized)
2	Body B	Aluminum alloy (anodized)
3	Table	Aluminum alloy (anodized)
4	Base A	Stainless steel
(5)	Swing plate	Stainless steel
6	Index plate	Steel
7	Knock plate	Steel
8	Cover	Stainless steel
9	Ratchet	Steel
10	Cam	Steel
11)	Pawl	Steel
12	Roller	Steel
13	Stopper A	Steel
14)	Stopper B	Steel
15	Stopper C	Steel
16	Main shaft	Steel
17	Connecting shaft	Steel
18	Piston	Plastic


No.	Parts	Materials
19	Retainer	Plastic
20	Separator	Plastic
21)	Gear	Steel
22	Bumper	Synthetic rubber (Urethane)
23	Clutch	_
24	Bushing A	Brass
25	Bushing B	Brass
26	Bushing D	Brass
27	Bushing E	Brass
28	Connecting pin	Stainless steel
29	Pin C	Stainless steel
30	Nut	Stainless steel
31)	Spring	Stainless steel
32	Piston seal	Synthetic rubber (NBR)
33	O-ring	Synthetic rubber (NBR)
34	Hexagon socket head bolt	Stainless steel
35	Hexagon socket head bolt	Stainless steel

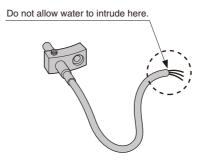
ARWT10- __-L- Sensor switch Assy

SENSOR SWITCH

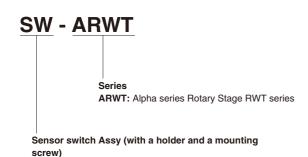
Specifications

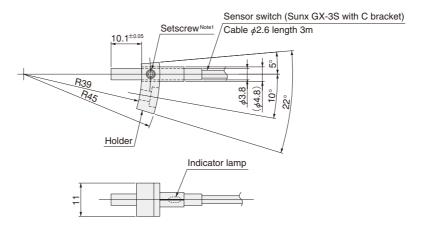
	Madal			
Item	Model	SW-ARWT		
Maximum detection distance ^{Note 1}		0.8mm [0.031in.]±15%		
Stable detection rangeNote 2		0~0.6mm [0~0.024in.]		
Standard detected object		Steel $5\times5\times1$ mm [0.20 \times 0.20 \times 0.04 (thickness) in.]		
Response differential (Hysteresis)		15% or less of operating distance		
Repeatab	ility	$20~\mu$ m or less		
Voltage		12~24V DC±10% Ripple P-P 10% or less		
Consumpt	tion current	15mA or less		
Output		NPN transistor open collector Maximum inrush current: 50mA Applied voltage: 30V DC or less Residual voltage: 0.4V or less (at 50mA inrush current)		
Output (or	peration)	Switches ON upon approach		
Maximum	response frequency	1kHz		
Indicator la	amp	Red LED (Lights up when output is ON)		
	Protective structure	IP67 (IEC), Watertight type (JIS) Note 3		
	Ambient temperature	-25~70°C [-13~158°F], in storage: -25~80°C [-13~176°F]		
Environ-	Ambient humidity	35~95%RH, in storage: 35~95%RH		
mental	Dielectric strength	AC500V 1 minute (Between every charging portion and case)		
resistance	Insulation resistance	$5M\Omega$ or more at DC250V megger (Between every charging portion and case)		
	Vibration resistance	10~55Hz Total amplitude 1.5mm [0.059in.] 2 hours for each X, Y, and Z direction (De-energized)		
	Shock resistance	200m/s² (approx. 20G) 10 times for each X, Y, and Z direction (De-energized)		
Variation of detection	Temperature characteristics	Within ±20% of detection distance at 20°C [68°F], in ambient temperature −25∼70°C [−13∼158°F].		
distance	Voltage characteristics	Within $\pm 2\%$ when operating voltage variation is $\pm 10\%$.		
Materials		Case: stainless steel (SUS304), Plastic portion: TPX		
Cable		0.08mm² [1.24×10-4in²] 3-lead Oil-resistant, heat-resistant, cold-resistant, with cabtyre cable 3m [118in.]		
Mass		Approximately 30g [1.06oz.]		

Notes: 1. Maximum detection distance refers to the maximum detection distance for standard detected object.

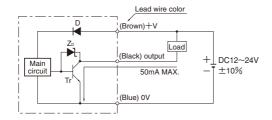

- 2. Stable detection range refers to the distance range at which stable detection of a standard detected object is obtained, with consideration for ambient temperature and variations in supply voltage.
- 3. While protective structure is prescribed the sensor switch including the cable, the end of the cable is not treated to be waterproof, and therefore cannot be a target for protective structure.

For this reason, avoid applications where there is a possibility that water could intrude through the end of the cable.



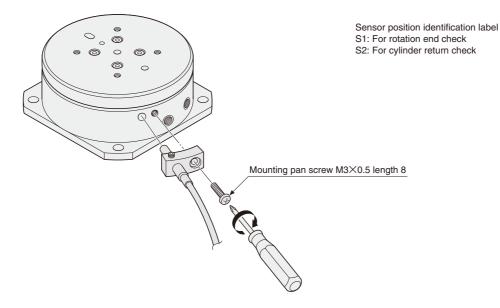

Use in combinations with devices of the Rotary Stage RWT series only.

The sensor switch Assy (SW-ARWT) is designed to be used in combination with the Rotary Stage RWT series. Use in combination with other actuators could cause abnormal operation.


Order Code

- Notes: 1. Do not loosen the setscrew. Changing the protruding length from the sensor switch holder could result in damage or defective operations.
 - 2. When re-tightening the setscrew, check the protruding length from the holder, and fasten at a tightening torque of 0.29N · m [2.6in · lbf] ±10% at a direction perpendicular to the indicator lamp.
 - 3. One mounting pan screw (M3 imes 0.5 length 8) is included in the sensor switch.

Internal Circuit Diagrams


Code···D: Reverse current protection diode

Z_D: Zener diode for surge voltage protection

Tr: NPN output transistor

Mounting Sensor Switch

● Tighten the mounting pan screw with a tightening torque of 0.63N • m [5.6in • lbf].

