

http://www.koganei.co.jp

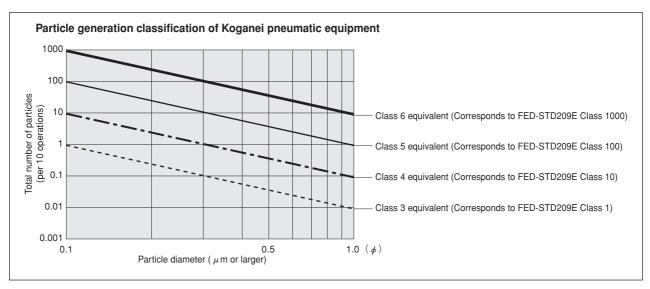
IS09001 IS014001

Clean System Product Drawings

Clean System Product Drawings Ver. 4

CONTENTS

Koganei Cleanliness ———————————————————————————————————	— 1
Actuators —	— 4
Valves————	122
Air Treatment and Auxiliary ——————	262
Equipment with Low Particle Generation Specification —	317



Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

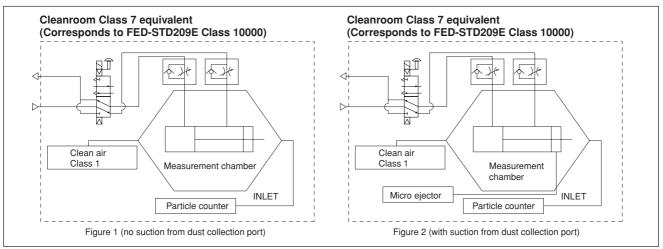
There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.

- 2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
- 3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.


The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder

Operating frequency: 1Hz

Average speed: 500mm/s [20in./sec.] Applied pressure: 0.5MPa [73psi.]

Suction condition: Microejector ME05, Primary side: 0.5MPa [73psi.] applied, Tube: ∮6 [0.236in.]

Mounting direction: Vertical Chamber volume: 8.3 ℓ [0.293ft.*]

2. Particle counter

Manufacturer/model: RION/KM20 Suction flow rate: 28.3 ℓ /min [1ft:/min.]

Particle diameter: 0.1 μ m, 0.2 μ m, 0.3 μ m, 0.5 μ m, 0.7 μ m, 1.0 μ m

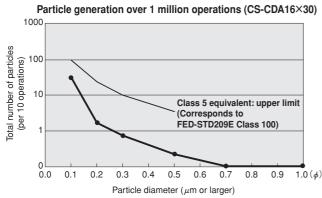
3. Measurement method

3-1 Confirmation of number of particles in the measurement system

Under the conditions in the above 1 and 2, using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.

3-2 Measurement under operation

Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.


3-3 Reconfirmation

Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results


Cleanroom specification

Jig Cylinder (no suction from dust collection port)

Cleanroom specification

Slim Cylinder (with suction from dust collection port)

Safety Precautions

Always read these precautions carefully before use.

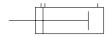
For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

- \bullet For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p.31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.

Clean System Product Drawings Actuators CONTENTS

Mini Bit Cylinders	
Specifications — — — — Mass/Order Codes — — — — — — — — — — — — — — — — — — —	- 5
Mass/Order Codes —	- 6
Inner Construction —	- /
Dimensions ————————————————————————————————————	- 9 11
Sensor Switches —	- 11
Multi Mount Cylinders	
Double Acting Type (BDA)	
Specifications/Order Codes ———	- 12
Inner Construction/Mass ————	- 13
Dimensions —	- 14
Double Acting Double Rod End Type	
(BDAD)	4 -
Specifications/Order Codes ———— Inner Construction/Mass ————	- 15
Dimensions —————	- 10
Non-rotating Double Acting Type	- 17
(BDAL)	
Specifications/Order Codes ———	. 18
Inner Construction/Mass ————	- 19
Dimensions —	- 20
Dimensions ————————————————————————————————————	- 21
Mini Cuido Clidoro	
Mini Guide Sliders	0.4
Specifications ————————————————————————————————————	- 24
Inner Construction —————	
Dimensions —	20
Sensor Switches —	
Consor Cwitches	00
Jig Cylinders C Series	
Double Acting Type (CDA)	
Specifications/	
Bore Size and Stroke —————	
Order Codes —	- 36
Inner Construction	
and Major Parts —	37
Dimensions ————————————————————————————————————	-38
Sensor Switches —	- 41

Jig Cylinders with Guide:	S
Specifications — Order Codes —	- 43
	- 44
Inner Construction and	4.5
Major Parts ————————————————————————————————————	45
Mass — Dimensions	- 46 47
Sensor Switches	
Sensor Switches —	- 49
Pen Cylinders	
Double Acting Type (PBDA)/	
Single Acting Push Type (PBSA)	
Specifications/Order Codes —	- 52
Mass —	- 53
Inner Construction and	
Major Parts —————	- 54
Dimensions —	- 55
Sensor Switches	- 58
Mounting Brackets/	
Rod End Accessories	- 61
Slim Cylinders	
Double Acting Type (DA)	
Specifications/Order Codes	- 63
Inner Construction/Mass Dimensions	- 65
Dimensions —	- 66
Double Rod End Double Acting Type	
(DAD)	
Specifications/Order Codes ————————————————————————————————————	- 69
Inner Construction/Mass ————	- 70
Dimensions —	- 71
End Keep Cylinders (DAK)	
Specifications/Order Codes ———	- 73
Inner Construction/Mass ————	- 74
Dimensions —	- 75
Block Cylinders (DAB)	
Specifications/Order Codes ———	- 76
Lanca Constant Control (NA)	
Dimensions —	- 77 - 78
Block End Keep Cylinders (DABK)	
Specifications/Order Codes ———	- 80
Inner Construction/Mass	01
Dimensions	82
Sensor Switches —	- 83


Twin Rod Cylinders ϕ 6 Double Acting Type (TDA) Specifications/Order Codes/Mass $-$ 87 Inner Construction/Dimensions $-$ 88 Sensor Switches $-$ 89	3
Twin Rod Cylinders B Series Double Acting Type (TBDA) Specifications/Order Codes ————————————————————————————————————	2
Rotary Actuators RAP Series Double Acting Type (RAP) Specifications/Mass99 Order Codes/Inner Construction100 Dimensions100 Sensor Switches100) 1
Air Hands NHB Series Specifications — 104 Inner Construction/Order Codes — 105 Handling Instructions and Precautions/Dimensions — 106 Sensor Switches — 105 Sensor Switches — 117	6

Symbol

● Double acting type (CS-MBDA)

Specifications

Item	Bore size mm [in.]	4.5 [0.177]	6 [0.236]	8 [0.315]	10 [0.394]			
Media			A	Air				
Operating pressure range MPa [psi.]	Double 0.15~0.7 [22~102]							
Proof pressure	MPa [psi.]		1.05	[152]				
Compatible Clea	anliness	Class 4 equivalent (Corresponds to FED-STD209E Class 10) (Assuming vacuum suction from dust collection port. In accordance with Koganei standards. For details, see p.8.)						
Operating temperatu	ure range °C [°F]		0~60 [3	32~140]				
Operating speed ran	ge mm/s [in./sec.]		50~500 [2.0~19.7]				
Cushion			No	one				
Lubrication	ubrication Prohibited							
Port size	Port size M3							
Stroke tolerance mm [in.] $^{+0.5}_{0}[^{+0.020}_{0}]$								

Cylinder Thrust

											N [lbf.]
Bore size	Piston rod diameter	Operating	Operating	Pressure area			Air pr	essure MPa [¡	osi.]		
mm [in.]	mm [in.]	type	direction	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
4.5 [0.177]	2 [0.079]	Double	Push side	15.9 [0.0246]	_	3.2 [0.72]	4.8 [1.08]	6.4 [1.44]	8.0 [1.80]	9.5 [2.14]	11.1 [2.50]
4.5 [0.177]	2 [0.075]	acting type	Pull side	12.8 [0.0198]	_	2.6 [0.59]	3.8 [0.86]	5.1 [1.15]	6.4 [1.44]	7.7[1.73]	9.0 [2.03]
6 [0.236]	3 [0.118]	Double	Push side	28.2 [0.0437]	_	5.6 [1.26]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]
0 [0.230]		acting type	Pull side	21.2 [0.0329]	I	4.2 [0.95]	6.4 [1.44]	8.5 [1.91]	10.6 [2.39]	12.7 [2.86]	14.8 [3.33]
0 [0 245]	3 [0.118]	Double	Push side	50.3 [0.0780]	_	10.1 [2.27]	15.1 [3.40]	20.1 [4.52]	25.2 [5.67]	30.2 [6.80]	35.2 [7.92]
8 [0.315]		acting type	Pull side	43.2 [0.0670]		8.6 [1.94]	13.0 [2.93]	17.3 [3.89]	21.6 [4.86]	25.9 [5.83]	30.2 [6.80]
40 [0 004]	4 [0 4 [7]	Double	Push side	78.5 [0.1217]	7.9 [1.78]	15.7 [3.53]	23.6 [5.31]	31.4 [7.07]	39.3 [8.84]	47.1 [10.60]	55.0 [12.36]
10 [0.394]	4 [0.157]	acting type	Pull side	65.9 [0.1021]	6.6 [1.49]	13.2 [2.97]	19.8 [4.46]	26.4 [5.94]	33.0 [7.43]	39.5 [8.89]	46.1 [10.37]

Bore Size and Stroke

			mm [in.]
Operating type	Bore size	Standard strokes	
	4.5 [0.177]	4, 6, 8, 10	
Double acting type	6 [0.236]	4, 6, 8, 10, 15	
Double acting type	8 [0.315]	4 6 0 10 15 00	
	10 [0.394]	4, 6, 8, 10, 15, 20	

Bore size

mm [in.]

4.5 [0.177]

6 [0.236]

8 [0.315]

10 [0.394]

Clean System Specification (Double Acting Type)

Stroke

4

6

8

10

4

6

8

10

15

4

6

8

10

15

20

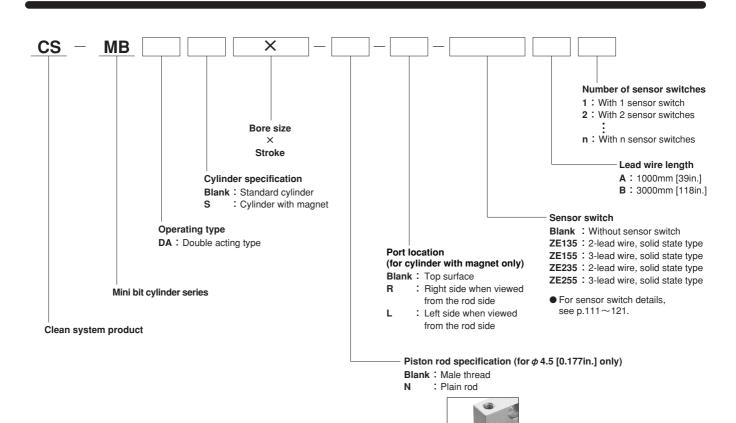
4

6

8

10

15


20

		g [oz.]	
	Addition	al mass	
	Sensor swite	ch (1 switch)	
	ZE□□□A	ZE□□□B	
_	15 [0.529]	35 [1.235]	
_			
_			
_	15 [0.529]	35 [1.235]	
_	10 [0.020]	00 [1.200]	
_			
	15 [0.529]	35 [1.235]	
	13 [0.329]	33 [1.233]	

35 [1.235]

15 [0.529]

Order Codes

Cylinder with magnet

9.2 [0.325]

9.8 [0.346]

10.4 [0.367]

11.0 [0.388]

12.9 [0.455]

13.7 [0.483]

14.5 [0.511]

15.3 [0.540]

17.3 [0.610]

17.6 [0.621]

18.7 [0.660]

19.8 [0.698]

20.9 [0.737]

23.7 [0.836]

26.5 [0.935]

23.4 [0.825]

24.8 [0.875]

26.2 [0.924]

27.6 [0.974]

31.1 [1.097]

34.6 [1.220]

Standard cylinder

6.0 [0.212]

6.5 [0.229]

7.0 [0.247]

7.5 [0.265]

9.9 [0.349]

10.6 [0.374]

11.3 [0.399]

12.0 [0.423]

13.8 [0.487]

13.8 [0.487]

14.7 [0.519]

15.7 [0.554]

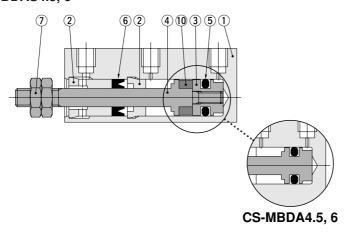
16.7 [0.589]

19.2 [0.677]

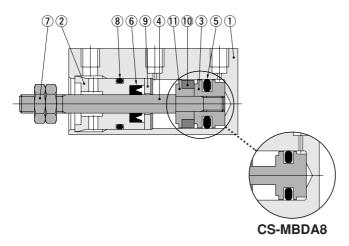
21.7 [0.765]

19.3 [0.681]

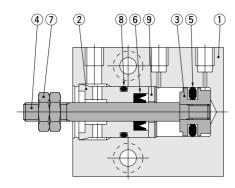
20.6 [0.727]


21.9 [0.772]

23.2 [0.818]


26.6 [0.938]

29.9 [1.055]


● Double acting type for CS CS-MBDAS4.5, 6

CS-MBDAS8, 10

CS-MBDA10

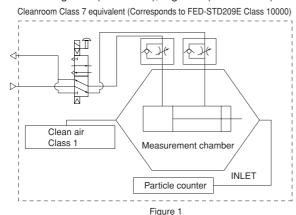
Major Parts and Materials

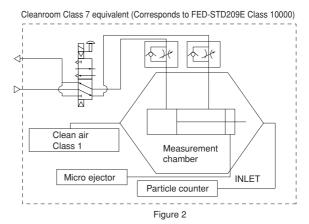
					mm [in.]			
No.	Bore size Parts	4.5 [0.177]	6 [0.236]	8 [0.315]	10 [0.394]			
1	Body	A	luminum all	oy (anodized	<u>(k</u>			
2	Rod cap	Oil impre	gnated plasti	c bushing (p	olyacetal)			
3	Piston ^{Note}	Aluminum	alloy (special r	ust prevention t	treatment)			
4	Piston rod		Stainle	ss steel				
<u></u>	Piston seal	Synthetic rubber (NBR)						
6	Rod seal	Synthetic rubber (NBR)						
7	Rod end nut	Stainless steel	Mild s	teel (nickel p	olated)			
8	O-ring	_	_	Synthetic ru	ubber (NBR)			
9	Seal holder	-	-	(speci	um alloy al rust treatment)			
10	Magnet	Neodymium magnet						
11)	Support	Aluminum alloy — (special rust prevention treatment						

Note: Material for **CS-MBDA4.5**, **6**, **8** is stainless steel, and the piston is one-piece construction with the piston rod.

Evaluations of Cleanliness (Mini Bit Cylinder)

There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Koganei has therefore independently established our in-house measurement methods, to conduct the cleanliness evaluation.


The number of particles of the Mini Bit Cylinder Cleanroom Specification is measured as shown in the method below.


1. Measurement sample

 $\phi 4.5 \times 6$, $\phi 6 \times 6$, $\phi 8 \times 6$, $\phi 10 \times 6$ 3 units each, for total of 12 units

2. Measurement conditions

2-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

2-2 Operating conditions of tested cylinder

Operating frequency: 1Hz

Average speed: 500mm/s [20in./sec.] Applied pressure: 0.5MPa [73psi.]

Suction condition: Microejector ME05, Primary side: 0.5MPa [73psi.] applied, Tube: ϕ 6 [0.236in.]

Mounting direction: Vertical Chamber volume: 8.3 ℓ [0.29ft.3]

3. Particle counter

Manufacturer/model: RION/KM20 Suction flow rate: 28.3 \(\ell \) /min [1ft.\(\frac{1}{3} \)/min [

Particle diameter: 0.1 μ m, 0.2 μ m, 0.3 μ m, 0.5 μ m, 0.7 μ m, 1.0 μ m

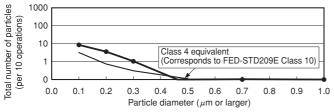
4. Measurement method

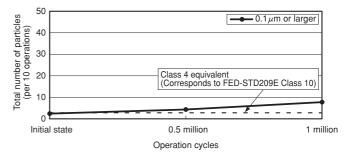
4-1 Confirmation of number of particles in the measurement system

Under the conditions in the above 1 and 2, using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.

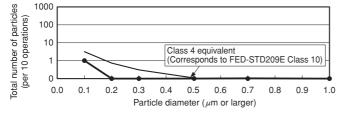
4-2 Measurement under operation

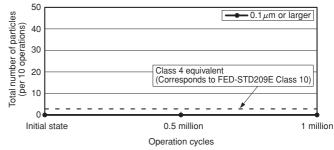
Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.

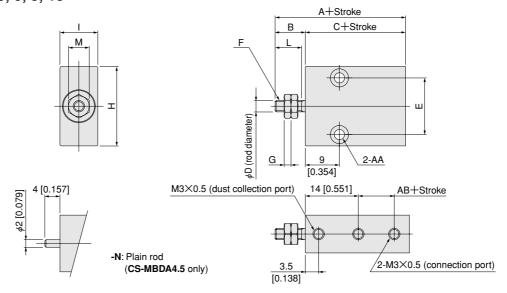

4-3 Reconfirmation


Performed the measurement in 4-1 again, to reconfirm the number of particles in the measurement system.

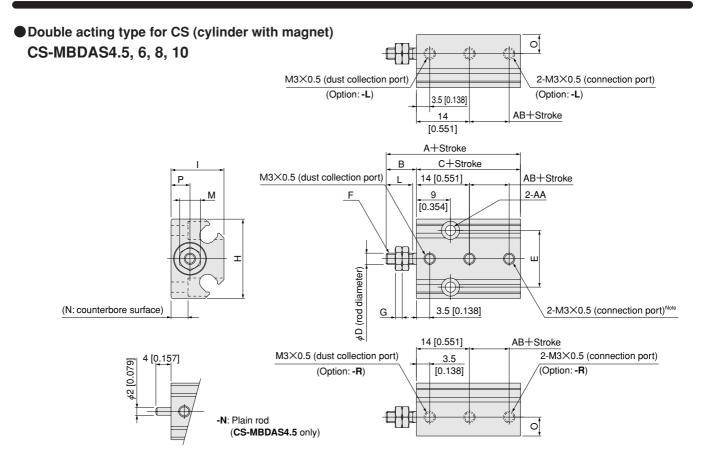
5. Measurement results (for ϕ 10×6)


Note: The graphs by particle diameter are based on measurements after 1 million operations of products.


No suction from dust collection port



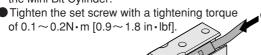
With suction from dust collection port



● Double acting type for CS (standard cylinder) CS-MBDA4.5, 6, 8, 10

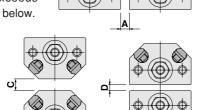
Model Code	Α	В	С	D	Е	F	G	Н	I	L	М	AA	AB
CS-MBDA4.5	27 [1.063]	7 [0.276]	20 [0.787]	2 [0.079]	10 [0.394]	M2×0.4	1.6 [0.063]	15 [0.591]	6 [0.236]	6 [0.236]	4 [0.157]	ϕ 2.2 [0.087] Counterbore ϕ 4.1 [0.161] Depth 2.2 [0.087] (both sides)	3 [0.118]
CS-MBDA6	28.5 [1.122]	8 [0.315]	20.5 [0.807]	3 [0.315]	12 [0.472]	M3×0.5	1.8 [0.071]	17 [0.669]	8 [0.315]	7 [0.276]	5.5 [0.217]	φ2.2 [0.087] Counterbore φ4.1 [0.161] Depth 2.2 [0.087] (both sides)	3.5 [0.138]
CS-MBDA8	28.5 [1.122]	8 [0.315]	20.5 [0.807]	3 [0.315]	15 [0.591]	M3×0.5	1.8 [0.071]	21 [0.827]	10 [0.394]	7 [0.276]	5.5 [0.217]	φ2.7 [0.106] Counterbore φ4.8 [0.189] Depth 3 [0.118] (both sides)	3.5 [0.138]
CS-MBDA10	31 [1.220]	10 [0.394]	21 [0.827]	4 [0.157]	17 [0.669]	M4×0.7	2.4 [0.094]	23 [0.906]	12 [0.472]	9 [0.354]	7 [0.276]	φ2.7 [0.106] Counterbore φ4.8 [0.189] Depth 3 [0.118] (both sides)	4 [0.157]

Note: When selecting the optional port location code -R or -L, the standard connection port comes with a plug.


Model Code	Α	В	С	D	Е	F	G	Н	I	L	М	N	0	Р	AA	AB
CS-MBDAS4.5	31 [1.220]	7 [0.276]	24 [0.945]	2 [0.079]	10 [0.394]	M2×0.4	1.6 [0.063]	15 [0.591]	11 [0.433]	6 [0.236]	4 [0.157]	2.5 [0.098]	2.8 [0.110]	3 [0.118]	φ2.2 [0.087] Counterbore φ4.1 [0.161] Depth 8.5 [0.335]	7 [0.276]
CS-MBDAS6	32 [1.260]	8 [0.315]	24 [0.945]	3 [0.118]	12 [0.472]	M3×0.5	1.8 [0.071]	17 [0.669]	12 [0.472]	7 [0.276]	5.5 [0.217]	4 [0.157]	4 [0.157]	4 [0.157]	φ2.2 [0.087] Counterbore φ4.1 [0.161] Depth 8 [0.315]	7 [0.276]
CS-MBDAS8	31.5 [1.240]	8 [0.315]	23.5 [0.925]	3 [0.118]	15 [0.591]	M3×0.5	1.8 [0.071]	21 [0.827]	14 [0.551]	7 [0.276]	5.5 [0.217]	4.5 [0.177]	5 [0.197]	5 [0.197]	φ2.7 [0.106] Counterbore φ4.8 [0.189] Depth 9.5 [0.374]	6.5 [0.256]
CS-MBDAS10	34 [1.339]	10 [0.394]	24 [0.945]	4 [0.157]	17 [0.669]	M4×0.7	2.4 [0.094]	23 [0.906]	16 [0.630]	9 [0.354]	7 [0.276]	5.5 [0.217]	6 [0.236]	6 [0.236]	φ2.7 [0.106] Counterbore φ4.8 [0.189] Depth 10.5 [0.413]	7 [0.276]

SENSOR SWITCHES

Sensor Switches


Moving Sensor Switch

 Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the Mini Bit Cylinder.

When Mounting Sensor Switches in Close Proximity

When using cylinders in close proximity, install the cylinder so that it exceeds the values in the table below.

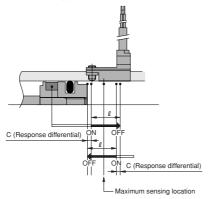
			_	
				mm [in.]
Bore size Item	Α	В	С	D
4.5 [0.177]	2 [0.079]	6 [0.236]	1 [0.039]	2 [0.079]
6 [0.236]	4 [0.157]	9 [0.354]	5 [0.197]	3 [0.118]
8 [0.315]	3 [0.118]	8 [0.315]	4 [0.157]	2 [0.079]
10 [0.394]	2 [0.079]	8 [0.315]	4 [0.157]	1 [0.039]

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

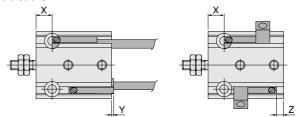

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Solid state type

Solid state type mn									
Item Bore size	4.5 [0.177]	6 [0.236]	8 [0.315]	10 [0.394]					
Operating range: ℓ	1.6~2.8 [0.063~0.110]	1.8~3.0 [0.071~0.118]	1.8~3.0 [0.071~0.118]	2.0~3.2 [0.079~0.126]					
Response differential: C		0.2 [0.00	8] or less						
Maximum sensing location Note	6 [0.236]								

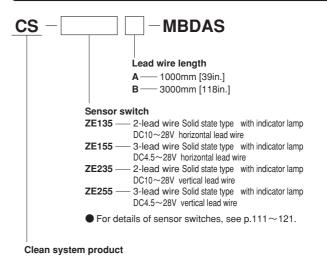
Remark: The above table shows reference values.

Note: The distance from the end of the opposite side of the lead wire.



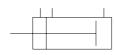
Minimum Cylinder Strokes When Mounting Sensor Switches

● Solid state type mm [in								
Item Bore size	4.5 [0.177]	6 [0.236]	8 [0.315]	10 [0.394]				
1pc. switch mounting		1.5 [0	0.059]					
2pcs. switch mounting	3 [0.118]							


Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the location shown in the diagram below (figures in the table are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

					- 1 - 1 -					
Solid stat	Solid state type mm [in									
Item	Bore size	4.5 [0.177]	6 [0.236]	8 [0.315]	10 [0.394]					
	Х	6 [0.236]	5.5 [0.217]	5 [0.197]	5 [0.197]					
Double acting	Υ	1.5 [0.059]	1 [0.039]	1.5 [0.059]	1 [0.039]					
type	Z	2 [0.079]	2 [0.079]	2 [0.079]	2.5 [0.098]					
Single acting	Х	8 [0.315]	7.5 [0.295]	7 [0.276]	7 [0.276]					
push type	Υ	1.5 [0.059]	1 [0.039]	1.5 [0.059]	1 [0.039]					
, ,,	Z	2 [0.079]	2 [0.079]	2 [0.079]	2.5 [0.098]					
00	Х	10 [0.394]	9.5 [0.374]	9 [0.354]	9 [0.354]					
CS specification	Υ	1.5 [0.059]	1 [0.039]	1.5 [0.059]	1 [0.039]					
opcomodion	Z	2 [0.079]	2 [0.079]	2 [0.079]	2.5 [0.098]					

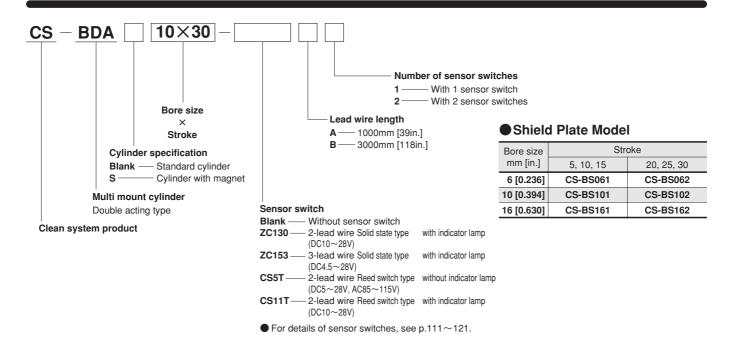

Order Codes (for Sensor Switches Only)

Double Acting Type

Symbol

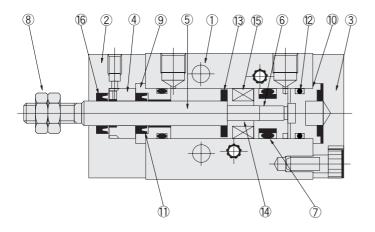
KOGANEI

0.


Specifications

Bore size mm [in.]	6 [0.236]	10 [0.394]	16 [0.630]	
Operating type	D	ouble acting typ	ре	
Media		Air		
Operating pressure range MPa [psi.]	0.15~0.7 [22~102]	0.1~0.7 [15~102]	0.08~0.7 [12~102]	
Proof pressure MPa [psi.]		1.03 [149]		
Operating temperature range °C [°F]	0	~60 [32~140	0]	
Operating speed range mm/s [in./sec.]	50	~300 [2.0~1	1.8]	
Cushion	ı	Rubber bumpe	r	
Lubrication	Not required			
Port size		M5×0.8	-	
Stroke tolerance mm [in.]		+1 [+0.039]		

Bore Size and Stroke

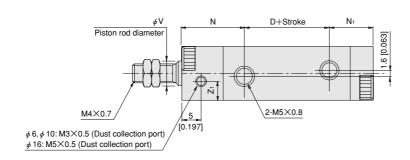

	mm [in.]
Bore size	Standard strokes
6 [0.236]	
10 [0.394]	5, 10, 15, 20, 25, 30
16 [0.630]	

Order Codes

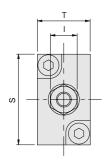
Inner Construction and Major Parts

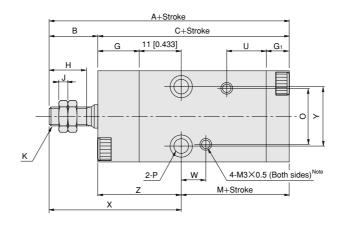
●CS-BDAS

Major Parts and Materials

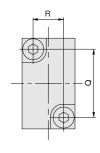

No.	Parts	Materials
1	Body	Aluminum alloy (anodized)
2	Rod cover	Aluminum alloy (black anodized)
3	Head cover	Aluminum alloy (black anodized)
4	Rod bushing	Oil impregnated bronze
(5)	Piston rod	Stainless steel
6	Piston	Brass
7	Piston seal	Synthetic rubber (NBR)
8	Rod end nut	Steel (electric nickel plated)
9	Seal case	Brass
10	Сар	Plastic
11)	Rod seal	Synthetic rubber (NBR)
12	O-ring	Synthetic rubber (NBR)
13	Bumper	Urethane rubber
14)	Support	Brass
15	Magnet	ϕ 6: Sintered alloy magnet; ϕ 10, ϕ 16: Plastic magnet
16	Dust leak prevention seal	Synthetic rubber (NBR)

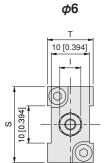
Seals

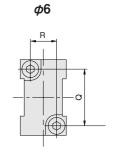

Parts	Rod seal	Piston seal	O-ring	Dust leak prevention seal
Bore size Q'ty	1	1	2	1
6	NY-6×3×2	PPH-6	8.4×6×1.2	NY-6×3×2
10	NY-8×5×2	PPH-10	10×7.6×1.2	NY-8×5×2
16	NY-9×6×2	PPH-16	16×13×1.5	NY-9×6×2


Mass

							g [oz.]		
		Mass of	side mount		Addition	nal mass			
Bore size mm [in.]	Stroke mm	Standard cylinder	Cylinder with magnet			nsor switch er with magnet)			
				ZC130□	ZC153□	CS5T□	CS11T□		
	5	23 [0.81]	26 [0.92]						
	10	26 [0.92]	29 [1.02]	-					
6 [0 226]	15	29 [1.02]	32 [1.13]	20 [0.71]					
6 [0.236]	20	32 [1.13]	35 [1.23]						
	25	35 [1.23]	38 [1.34]	-					
	30	38 [1.34]	41 [1.45]						
	5	41 [1.45]	47 [1.66]						
	10	45 [1.59]	51 [1.80]						
10 [0 204]	15	49 [1.73]	55 [1.94]		20.0	0.741			
10 [0.394]	20	53 [1.87]	59 [2.08]		ا) 20	0.71]			
	25	57 [2.01]	63 [2.22]						
	30	61 [2.15]	67 [2.36]						
	5	84 [2.96]	97 [3.42]				_		
	10	91 [3.21]	104 [3.67]	1					
16 [0 620]	15	98 [3.46]	111 [3.92]		20.1	0.711			
16 [0.630]	20	105 [3.70]	118 [4.16]		20 [1	0.71]			
	25	112 [3.95]	125 [4.41]						
	30	119 [4.20]	132 [4.66]	1					







Type		Standard	d cylinder		С	ylinder w	ith magn	et							
Bore size	Α	С	D	М	А	С	D	М	В	G	G₁	Н	I	J	K
6 [0.236]	43 [1.693]	33 [1.299]	8 [0.315]	12 [0.472]	48 [1.890]	38 [1.496]	13 [0.512]	17 [0.669]	10 [0.394]	10 [0.394]	5 [0.197]	7 [0.276]	5.5 [0.217]	1.8 [0.071]	M3×0.5
10 [0.394]	48 [1.890]	35 [1.378]	7 [0.276]	13 [0.512]	53 [2.087]	40 [1.575]	12 [0.472]	18 [0.709]	13 [0.512]	11 [0.433]	6 [0.236]	10 [0.394]	7 [0.276]	2.4 [0.094]	M4×0.7
16 [0.630]	53 [2.087]	38 [1.496]	8 [0.315]	15 [0.591]	58 [2.283]	43 [1.693]	13 [0.512]	20 [0.787]	15 [0.591]	12 [0.472]	7 [0.276]	12 [0.472]	8 [0.315]	3.2 [0.126]	M5×0.8

Code Bore size	N	N ₁	0	Р	Q	R	S	Т	U	V	W	х	Y	Z	Z 1
6 [0.236]	15 [0.591]	10 [0.394]	14 [0.551]	φ 3.5 [0.138] , 4 – φ 6 [0.236] Counterbore Depth 4.2 [0.165] (Both sides)	15 [0.591]	7 [0.276]	20 [0.787]	12 [0.472]		3 [0.118]	6.5	31 [1.220]	12 [0.472]	21 [0.827]	5 [0.197]
10 [0.394]	16.5 [0.650]	11.5 [0.453]	15 [0.591]	φ 3.5 [0.138] , 4 – φ 6 [0.236] Counterbore Depth 3.2 [0.126] (Both sides)	18 [0.709]	8 [0.315]	24 [0.945]	14 [0.551]	10.5 [0.413]	5 [0.197]	[0.256]	35 [1.378]	16 [0.630]	22 [0.866]	5 [0.197]
16 [0.630]	17.5 [0.689]	12.5 [0.492]	19 [0.748]	ϕ 4.5 [0.177] , 4 – ϕ 7.6 [0.299] Counterbore Depth 4.2 [0.165] (Both sides)	25 [0.984]	12 [0.472]	33 [1.299]	20 [0.787]		6 [0.236]	7.5 [0.295]	38 [1.496]	24 [0.945]	23 [0.906]	7 [0.276]

Note: The 4-M3 × 0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available with the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

Double Acting Double Rod End Type

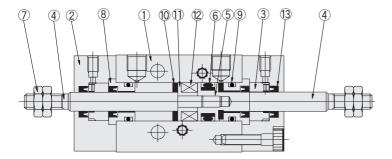
Symbol

KOGANEI

Specifications

Bore size mm [in.]	6 [0.236]	10 [0.394]	16 [0.630]
Item		1	
Operating type	D.	ouble acting type	pe
Media		Air	
Operating pressure range MPa [psi.]	0.2~0.7 [29~102]	0.15~0.7 [22~102]	0.1~0.7 [15~102]
Proof pressure MPa [psi.]		1.03 [149]	
Operating temperature range °C [°F]	0	~60 [32~140	0]
Operating speed range mm/s [in./sec.]	50	~300 [2.0~1	1.8]
Cushion	ı	Rubber bumpe	r
Lubrication		Not required	
Port size		M5×0.8	
Stroke tolerance mm [in.]		⁺¹ ₀ [+0.039]	

Bore Size and Stroke

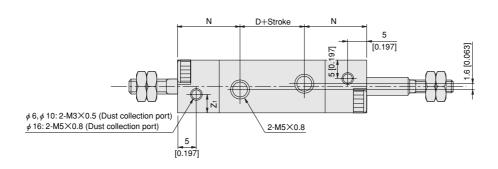

	mm [in.]
Bore size	Standard strokes
6 [0.236]	
10 [0.394]	5, 10, 15, 20, 25, 30
16 [0.630]	

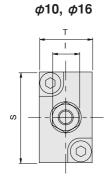
Order Codes

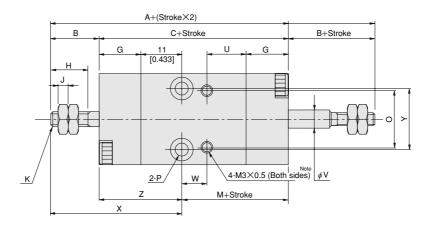
Inner Construction and Major Parts

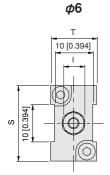
●CS-BDADS

Major Parts and Materials

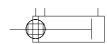

No.	Parts	Materials
1	Body	Aluminum alloy (anodized)
2	Rod cover	Aluminum alloy (black anodized)
3	Rod bushing	Oil impregnated bronze
4	Piston rod	Stainless steel
(5)	Piston	Stainless steel
6	Piston seal	Synthetic rubber (NBR)
7	Rod end nut	Steel (electric nickel plated)
8	Seal case	Brass
9	O-ring	Synthetic rubber (NBR)
10	Bumper	Urethane rubber
11)	Support	Brass
12	Magnet	ϕ 6: Sintered alloy magnet, ϕ 10, ϕ 16: Plastic magnet
13	Dust leak prevention seal	Synthetic rubber (NBR)


Seals


Parts	Rod seal	Piston seal	O-ring	Dust leak prevention seal	
Bore size Q'ty	2	1	2	2	
6	NY-6×3×2	PPH-6	8.4×6×1.2	NY-6×3×2	
10	NY-8×5×2	PPH-10	10×7.6×1.2	NY-8×5×2	
16	NY-9×6×2	PPH-16	16×13×1.5	NY-9×6×2	


Mass

							g [oz.]			
		Mass of	side mount	Additional mass						
Bore size mm [in.]	Stroke mm	Standard cylinder	Cylinder with magnet							
				ZC130 □	CS11T□					
	5	31 [1.09]	34 [1.20]	_						
	10	34 [1.20]	37 [1.31]							
6 [0 226]	15	37 [1.31]	40 [1.41]		0.711					
6 [0.236]	20	40 [1.41]	43 [1.52]		0.71]					
	25	43 [1.52]	46 [1.62]							
	30	46 [1.62]	49 [1.73]							
	5	53 [1.87]	59 [2.08]							
	10	57 [2.01]	63 [2.22]	20 [0.71]						
10 [0.394]	15	61 [2.15]	67 [2.36]							
10 [0.554]	20	65 [2.29]	71 [2.50]							
	25	69 [2.43]	75 [2.65]							
	30	73 [2.57]	79 [2.79]							
	5	105 [3.70]	118 [4.16]							
	10	112 [3.95]	125 [4.41]	1						
16 [0 620]	15	119 [4.20]	132 [4.66]		1.00	0.711				
16 [0.630]	20	126 [4.44]	139 [4.90]		20 [0.71]				
	25	133 [4.69]	146 [5.15]							
	30	140 [4.94]	153 [5.40]							

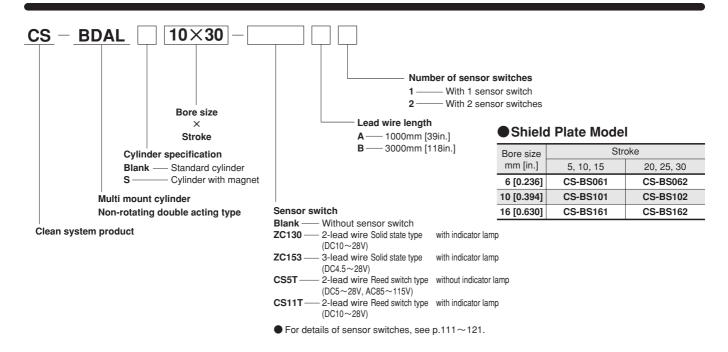


Туре		Standard	d cylinder		С	ylinder w	ith magn	et								
Bore size	А	С	D	М	А	С	D	М	В	G	Н	I	J	ŀ	K	
6 [0.236]	58 [2.283]	38 [1.496]	8 [0.315]	17 [0.669]	63 [2.480]	43 [1.693]	13 [0.512]	22 [0.866]	10 [0.394]	10 [0.394]	7 [0.276]	5.5 [0.217]	1.8 [0.071]	M3×0.5		
10 [0.394]	66 [2.598]	40 [1.575]	7 [0.276]	18 [0.709]	71 [2.795]	45 [1.772]	12 [0.472]	23 [0.906]	13 [0.512]	11 [0.433]	10 [0.394]	7 [0.276]	2.4 [0.094]	M42	×0.7	
16 [0.630]	73 [2.874]	43 [1.693]	8 [0.315]	20 [0.787]	78 [3.071]	48 [1.890]	13 [0.512]	25 [0.984]	15 [0.591]	12 [0.472]	12 [0.472]	8 [0.315]	3.2 [0.126]	M5×0.8		
Code Bore size	N	0		F)		S	Т	U	V	W	Х	Y	Z	Z ₁	
6 [0.236]	15 [0.591]	14 [0.551]		φ 3.5 [0.138] Counterbore φ 6 [0.236] Depth 4.2 [0.165] (Both sides)				12 [0.472]		3 [0.118]	6.5	31 [1.220]	12 [0.472]	21 [0.827]	5 [0.197]	
10 [0.394]	16.5 [0.650]	15 [0.591]	φ 3.5 [0.138] Counterbore φ 6 [0.236] Depth 3.2 [0.126] (Both sides)				24 [0.945]	14 [0.551]	10.5 [0.413]	5 [0.197]	[0.256]	35 [1.378]	16 [0.630]	22 [0.866]	5 [0.197]	
16 [0.630]	17.5 [0.689]	19 [0.748]		177] Count th 4.2 [0.16			33 [1.299]	20 [0.787]		6 [0.236]	7.5 [0.295]	38 [1.496]	24 [0.945]	23 [0.906]	7 [0.276]	

Note: The 4-M3×0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available with the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

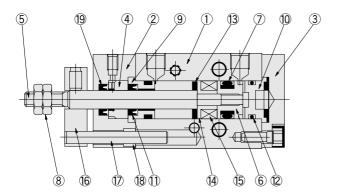
Non-rotating Double Acting Type

Symbol


Specifications

Bore size mm [in.]	6 [0.236]	10 [0.394]	16 [0.630]			
Operating type	Non-rota	ating double ac	ting type			
Media		Air				
Operating pressure range MPa [psi.]	0.2~0.7 [29~102]	0.15~0.7 [22~102]	0.1~0.7 [15~102]			
Proof pressure MPa [psi.]		1.03 [149]				
Operating temperature range °C [°F]	0~60 [32~140]					
Operating speed range mm/s [in./sec.]	50~300 [2.0~11.8]					
Cushion	ı	Rubber bumpe	r			
Lubrication		Not required				
Non-rotating accuracy	±2°	±1.5°	±1°			
Port size		M5×0.8				
Stroke tolerance mm [in.]		+1 [+0.039]				

Bore Size and Stroke

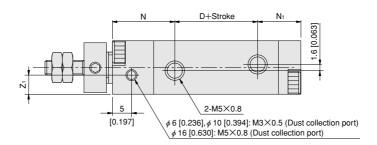

	mm [in.]
Bore size	Standard strokes
6 [0.236]	
10 [0.394]	5, 10, 15, 20, 25, 30
16 [0.630]	

Order Codes

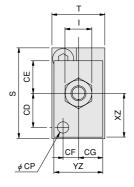
Inner Construction and Major Parts

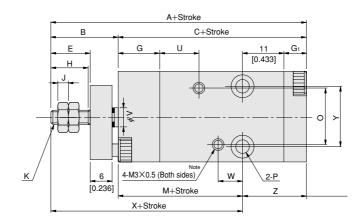
●CS-BDALS

Major Parts and Materials

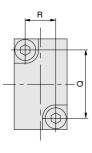

No.	Parts	Materials
1	Body	Aluminum alloy (anodized)
2	Rod cover	Aluminum alloy (black anodized)
3	Head cover	Aluminum alloy (black anodized)
4	Rod bushing	Oil impregnated bronze
(5)	Piston rod	Stainless steel
6	Piston	Brass
7	Piston seal	Synthetic rubber(NBR)
8	Rod end nut	Steel (electric nickel plated)
9	Seal case	Brass
10	Сар	Plastic
11)	Rod seal	Synthetic rubber (NBR)
12	O-ring	Synthetic rubber (NBR)
13	Bumper	Urethane rubber
14	Support	Brass
15	Magnet	ϕ 6: Sintered alloy magnet ϕ 10, ϕ 16: Plastic magnet
16	Plate	Brass (electric nickel plated)
17	Guide pin	Stainless steel
18	Bushing	Plastic
19	Dust leak prevention seal	Synthetic rubber(NBR)

Seals

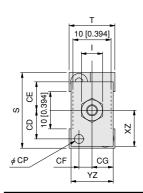

Parts	Rod seal	Piston seal	O-ring	Dust leak prevention seal
Bore size Q'ty	1	1	2	1
6	NY-6×3×2	PPH-6	8.4×6×1.2	NY-6×3×2
10	NY-8×5×2	PPH-10	10×7.6×1.2	NY-8×5×2
16	NY-9×6×2	PPH-16	16×13×1.5	NY-9×6×2

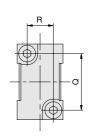

Mass

							g [oz.]			
		Mass of s	side mount		Addition	nal mass				
Bore size mm [in.]	Stroke mm	Standard cylinder	Cylinder with magnet	With 1 sensor switch (Only for cylinder with magnet)						
				ZC130 □	CS5T□	CS11T□				
	5	33 [1.16]	36 [1.27]							
	10	36 [1.27]	39 [1.38]							
6 [0 226]	15	39 [1.38]	42 [1.48]		1.00	0.711				
6 [0.236]	20	42 [1.48]	20 [0.71]						
	25	45 [1.59]	48 [1.69]	1.69]						
	30	48 [1.69]	51 [1.80]							
	5	55 [1.94]	61 [2.15]							
	10	59 [2.08]	65 [2.29]							
10 [0.394]	15	63 [2.22]	69 [2.43]							
10 [0.334]	20	67 [2.36]	73 [2.57]							
	25	71 [2.50]	77 [2.72]							
	30	75 [2.65]	81 [2.86]							
	5	109 [3.84]	122 [4.30]							
	10	116 [4.09]	129 [4.55]							
16 [0 620]	15	123 [4.34]	136 [4.80]		1.00	0.711				
16 [0.630]	20	130 [4.59]	143 [5.04]		20 [0.71]				
	25	137 [4.83]	150 [5.29]							
	30	144 [5.08]	157 [5.54]							



*φ*10 [0.394], *φ*16 [0.630]



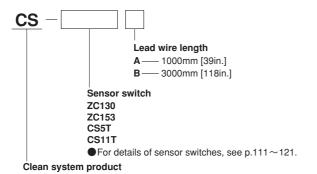


 ϕ 6 [0.236]

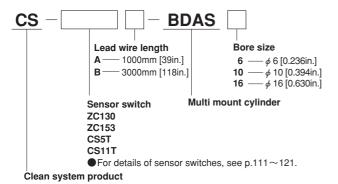
Type		Standard cylinder Cylinder with magnet														
Bore size	А	С	D	М	Х	Α	С	D	М	Х	В	E	G	_	J	K
6 [0.236]	48 [1.890]	33 [1.299]	8 [0.315]	17 [0.669]	32 [1.260]	53 [2.087]	38 [1.496]	13 [0.512]	22 [0.866]	37 [1.457]	15 [0.591]	7.5 [0.295]	10 [0.394]	5.5 [0.217]	1.8 [0.071]	M3×0.5
10 [0.394]	53 [2.087]	35 [1.378]	7 [0.276]	18 [0.709]	36 [1.417]	58 [2.283]	40 [1.575]	12 [0.472]	23 [0.906]	41 [1.614]	18 [0.709]	10.5 [0.413]	11 [0.433]	7 [0.276]	2.4 [0.094]	M4×0.7
16 [0.630]	58 [2.283]	38 [1.496]	8 [0.315]	20 [0.787]	40 [1.575]	63 [2.480]	43 [1.693]	13 [0.512]	25 [0.984]	45 [1.772]	20 [0.787]	12.5 [0.492]	12 [0.472]	8 [0.315]	3.2 [0.126]	M5×0.8

Code Bore size	N	N ₁	0	Р	Q	R	S	Т	U	V	W	Y	Z	Z ₁
6 [0.236]	15 [0.591]	10 [0.394]	14 [0.551]	φ 3.5 [0.138], Counterbore φ 6 [0.236] Depth 4.2 [0.165] (Both sides)	15 [0.591]	7 [0.276]	20 [0.787]	12 [0.472]		3 [0.118]	6.5	12 [0.472]	16 [0.630]	5 [0.197]
10 [0.394]	16.5 [0.650]	11.5 [0.453]	15 [0.591]	φ 3.5 [0.138], Counterbore φ 6 [0.236] Depth 3.2 [0.126] (Both sides)	18 [0.709]	8 [0.315]	24 [0.945]	14 [0.551]	10.5 [0.413]	5 [0.197]	[0.256]	16 [0.630]	17 [0.669]	5 [0.197]
16 [0.630]	17.5 [0.689]	12.5 [0.492]	19 [0.748]	ϕ 4.5 [0.177], Counterbore ϕ 7.6 [0.299] Depth 4.2 [0.165] (Both sides)	25 [0.984]	12 [0.472]	33 [1.299]	20 [0.787]		6 [0.236]	7.5 [0.295]	24 [0.945]	18 [0.709]	7 [0.276]

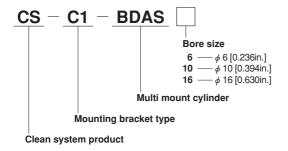
Bore size	CD	CE	CF	CG	СР	XZ	YZ
6 [0.236]	7.5 [0.295]	7.5 [0.295]	3.5 [0.138]	5.5 [0.217]	2.5 [0.098]	9.5 [0.374]	11 [0.433]
10 [0.394]	9 [0.354]	8.5 [0.335]	4 [0.157]	6.5 [0.256]	3 [0.118]	11.5 [0.453]	13 [0.512]
16 [0.630]	12.5 [0.492]	9 [0.354]	6 [0.236]	9.5 [0.374]	4 [0.157]	16 [0.630]	19 [0.748]


Note: The 4-M3×0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available with the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

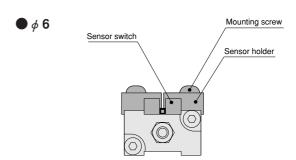
MULTI MOUNT CYLINDERS

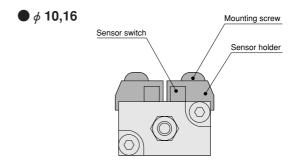

Sensor Switches

Order Codes (for Sensor Switches Only)


Sensor switches only

 Sensor switch and Mounting bracket (Sensor switch with mounting bracket)




Mounting bracket only

Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved freely in the cylinder's axial direction.
- Tighten the mounting screw with a tightening torque of 19.6N·cm [1.73in·lbf] or less.

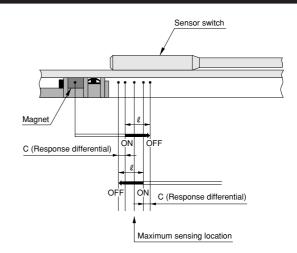
Minimum Cylinder Strokes When Mounting Sensor Switches

(
m							
Ī	Bore size	Solid state type	e sensor switch	Reed switch type sensor switch			
	Bore Size	2 pcs. mounting	1 pc. mounting	2 pcs. mounting	1 pc. mounting		
	6 [0.236] 10 [0.394] 16 [0.630]			10 [0.394]	5 [0.197]		
		5 [0.197]	5 [0.197]				
-							

Remark: Two sensor switches cannot be mounted on a cylinder with flange B mount.

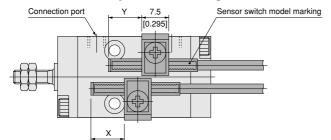
Mount 1 sensor switch on the head side when the flange B mount is used on the rod side, and mount 1 sensor switch on the rod side when the flange B mount is used on the head side.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

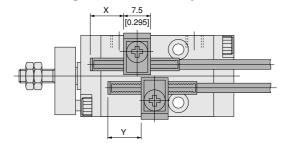

Operating range: \(\ell \) The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.


11111 [111.							
Doro oizo	ZC130 🗆	,ZC153□	CS5T□,CS11T□				
Bore size	Operating range	Response differential	Operating range	Response differential			
6 [0.236]	2.0~3.0	0.3 [0.012]	4.8~7.2	1.3 [0.051]			
	[0.079~0.118]	or less	[0.189~0.283]	or less			
10 [0.394]	2.0~3.0	0.3 [0.012]	5.8~8.3	2.0 [0.079]			
	[0.079~0.118]	or less	[0.228~0.327]	or less			
16 [0.630]	2.5~4.0	0.3 [0.012]	7.5~9.4	2.5 [0.098]			
	[0.098~0.157]	or less	[0.295~0.370]	or less			

Remark: The above table shows reference values.



Mounting Location of End of Stroke Detection Sensor Switch

- Cylinder with magnet
- Double rod end cylinder with magnet

- Non-rotating cylinder with magnet
- Non-rotating double rod end cylinder

Double acting type (Including double rod end cylinders) mm [in.]

Bore size	Mounting	Sensor switch model				
Dole Size	location	ZC130 □,ZC153 □	CS5T□	CS11T□		
6 [0.236]	Х	13.0 [0.512]	11.5 [0.453]	15 [0.591]		
10 [0.394]	Υ	8.0 [0.315]	6.5 [0.256]	10 [0.394]		
16 [0 620]	Х	14.0 [0.551]	12.5 [0.492]	16 [0.630]		
16 [0.630]	Υ	9.0 [0.354]	7.5 [0.295]	11 [0.433]		

Single acting nuch type

Siligi								
Bore size	Mounting	S	el					
Dule Size	location	ZC130 □,ZC153 □	CS5T□	CS11T□				
6 [0.236]	Χ	8.0 [0.315]	6.5 [0.256]	10 [0.394]				
10 [0.394]	Υ	8.0 [0.315]	6.5 [0.256]	10 [0.394]				
16 [0.630]	Χ	9.0 [0.354]	7.5 [0.295]	11 [0.433]				
10 [0.030]	Υ	9.0 [0.354]	7.5 [0.295]	11 [0.433]				

Single acting pull type

Single acting pull type mm [in.]							
Mounting	S	el					
location	ZC130□,ZC153□	CS5T□	CS11T□				
Х	13.0 [0.512]	11.5 [0.453]	15 [0.591]				
Υ	13.0 [0.512]	11.5 [0.453]	15 [0.591]				
Х	14.0 [0.551]	12.5 [0.492]	16 [0.630]				
Υ	14.0 [0.551]	12.5 [0.492]	16 [0.630]				
	Mounting location X Y X	Mounting location S X 13.0 [0.512] Y 13.0 [0.512] X 14.0 [0.551]	Mounting location Sensor switch mode X 13.0 [0.512] 11.5 [0.453] Y 13.0 [0.512] 11.5 [0.453] X 14.0 [0.551] 12.5 [0.492]				

Double acting type (Including double rod end cylinders)

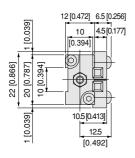
Bore size	Mounting	Sensor switch model				
Dole Size	location	ZC130 □,ZC153 □	CS5T□	CS11T□		
6 [0.236]	Х	6.0 [0.236]	4.5 [0.177]	8 [0.315]		
10 [0.394]	Υ	1.0 [0.039]	-0.5 [-0.020]	3 [0.118]		
16 [0 620]	Х	7.0 [0.276]	5.5 [0.217]	9 [0.354]		
16 [0.630]	Υ	2.0 [0.079]	0.5 [0.020]	4 [0.157]		

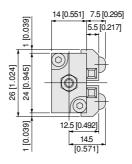
Single acting push type

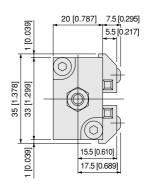
Singl	Single acting push type mm [in.]						
Bore size	Mounting	S	el				
Dole Size	location	ZC130 □,ZC153 □	CS5T□	CS11T□			
6 [0.236]	Х	1.0 [0.039]	-0.5 [-0.020]	3 [0.118]			
10 [0.394]	Υ	1.0 [0.039]	-0.5 [-0.020]	3 [0.118]			
16 [0.630]	Х	2.0 [0.079]	0.5 [0.020]	4 [0.157]			
10 [0.030]	Υ	2.0 [0.079]	0.5 [0.020]	4 [0.157]			

Single acting pull type

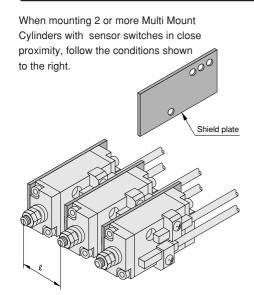
Por	Bore size	Mounting	Sensor switch model			
БОГЕ		location	ZC130□,ZC153□	CS5T□	CS11T□	
6 [0	.236]	Х	6.0 [0.236]	11.5 [0.453]	8 [0.315]	
10 [0	0.394]	Υ	6.0 [0.236]	11.5 [0.453]	8 [0.315]	
16 [6	16 [0.630]	Х	7.0 [0.276]	12.5 [0.492]	9 [0.354]	
ין סו		Υ	7.0 [0.276]	12.5 [0.492]	9 [0.354]	


- Remarks: 1. The above tables give reference values for the standard strokes. For the procedure to find-out the best sensing position, see p.23.
 - 2. The above figures are obtained when the piping connection port turned to face upward.
 - 3. Use the distance between the cylinder mounting hole and the rod cover to confirm the mounting location of the end of stroke detection sensor switch on the double rod end cylinder.
 - 4. Mount the sensor switch so that the surface showing the sensor switch model marking faces up.


mm lin 1


\bullet ϕ 6 [0.236]

φ 10 [0.394]

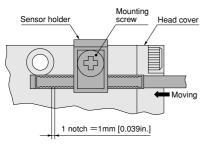

• \(\phi \) 16 [0.630]

Precautions for Mounting Cylinders with Magnets

	Without sl	nield plate	With shield plate	
Bore size mm [in.]			Shield plate	
6 [0.236]	25mm [0.984] or longer	23mm [0.906] or longer	22mm [0.866] or longer	
10 [0.394]	29mm [1.142] or longer	31mm [1.220] or longer	25mm [0.984] or longer	
16 [0.630] 35mm [1.378] or longer		39mm [1.535] or longer	31mm [1.220] or longer	

Remark: Except the above, there are no particular limitations in mounting.

Shield Plate Model (Order Code)

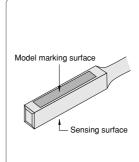

Stroke Stroke	Applicable shield plate model						
Bore Mnn	Double acting type, Double	Single acting push/pull type					
size mm [in.]	5, 10, 15	20, 25, 30	5, 10	15			
6 [0.236]	CS-BS061	CS-BS062	CS-BS061	CS-BS062			
10 [0.394]	CS-BS101	CS-BS102	CS-BS101	CS-BS102			
16 [0.630]	CS-BS161	CS-BS162	CS-BS161	CS-BS162			

Remarks: 1. All shield plates come with 2 mounting screws.

Procedure for finding the best sensing position

Setting the head side stroke end

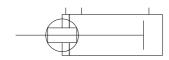
- 1. Push piston rod to the fully retracted position.
- 2. Install a sensor switch in a holder without tightening a mounting screw all the way, move the switch from head side to rod side until it turns ON (for ZC130□, ZC153□ and CS11T□, when the LED lights up), then move the switch 1 notch (=1mm [0.039in.]) for ZC130□ and ZC153□, or 2 notches (=2mm [0.079in.]) for CS5T□ and CS11T□ toward the rod side, and tighten the mounting screw.

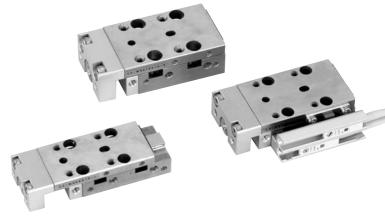


Setting the rod side stroke end

Conduct the same procedure as the head side, but on the reversed way.

- 1. Pull piston rod to the fully extended position.
- 2. Install a sensor switch in a holder without tightening a mounting screw all the way, move the switch from rod side to head side until it turns ON, then move the switch 1 notch (=1mm [0.039in.]) for ZC130 ☐ and ZC153 ☐, or 2 notches (=2mm [0.079in.]) for CS5T ☐ and CS11T ☐ toward the head side, and tighten the mounting screw.


Caution when installing sensor switches on the cylinder



In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

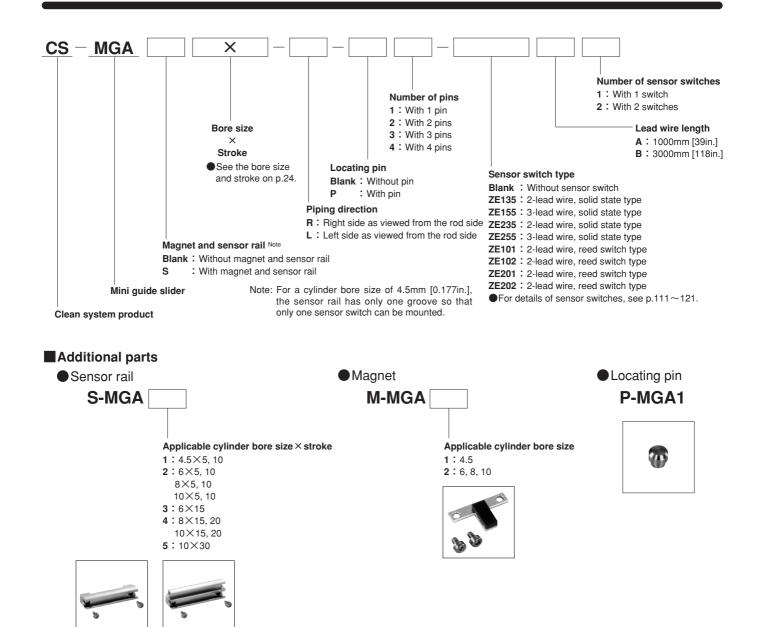
^{2.} Order shield plates separately.

Symbol

Specifications

Item	Model	CS-MGA ☐ 4.5	CS-MGA□6	CS-MGA□8	CS-MGA□10		
Bore size	mm [in.]	4.5 [0.177]	6 [0.236]	8 [0.315]	10 [0.394]		
Operating type			Double a	cting type			
Media			А	ir			
Operating pressure range	MPa [psi.]	0.2~0.7	[29~102]	0.15~0.7	[22~102]		
Proof pressure	MPa [psi.]		1.05	[152]			
Operating temperature range	°C [°F]	°C [°F] 0~60 [32~140]					
Operating speed range	mm/s [in./sec.]		30~300[1.2~11.8]			
Cushion		None		Rubber bumper			
Port size			M3>	<0.5			
Lubrication	Cylinder portion	Prohibited					
Lubrication	Guide portion		Requi	red ^{Note}			
Perpendicularity of end plate	mm [in.]		0.1 [0	0.004]			
Stroke tolerance	mm [in.]	+1 [+0.039] 0 [0]					
Allowable moment	Мр	0.24 [2.12]	0.28 [2.48]	0.28 [2.48]	0.28 [2.48]		
N·m [in·lbf]	Му	0.29 [2.57]	0.34 [3.01]	0.34 [3.01]	0.34 [3.01]		
[וסויוון] ווויאוון	Mr	0.22 [1.95]	0.23 [2.04]	0.38 [3.36]	0.38 [3.36]		
Number of available sensor sw	vitches (optional)	1 pc. 2 pcs.					

Note: Apply cleanroom use lithium soap-based grease on the raceway surface of the track rail in the guide portion every 6 months or 3 million operations. Remark: Packaging is a single packaging.


Cylinder Thrust

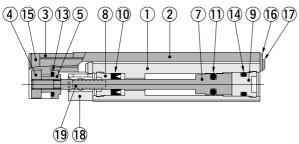
									N [lbf.]
Bore size	Piston rod diameter	Operating	Pressure area			Air pressure	MPa [psi.]		
mm [in.]	mm [in.]	direction	mm² [in.²]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
4.5 [0.177]	2 [0.079]	Push side	15.9 [0.0246]	3.2 [0.72]	4.8 [1.08]	6.4 [1.44]	8.0 [1.80]	9.5 [2.14]	11.1 [2.50]
4.5 [0.177]	2 [0.079]	Pull side	12.8 [0.0198]	2.6 [0.59]	3.8 [0.86]	5.1 [1.15]	6.4 [1.44]	7.7 [1.73]	9.0 [2.03]
6 [0 226]	2 [0 110]	Push side	28.2 [0.0437]	5.6 [1.26]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]
6 [0.236]	3 [0.118]	Pull side	21.2 [0.0329]	4.2 [0.95]	6.4 [1.44]	8.5 [1.91]	10.6 [2.39]	12.7 [2.86]	14.8 [3.33]
0 [0 215]	2 [0 110]	Push side	50.3 [0.0780]	10.1 [2.27]	15.1 [3.40]	20.1 [4.52]	25.2 [5.67]	30.2 [6.80]	35.2 [7.92]
8 [0.315]	3 [0.118]	Pull side	43.2 [0.0670]	8.6 [1.94]	13.0 [2.93]	17.3 [3.89]	21.6 [4.86]	25.9 [5.83]	30.2 [6.80]
10 [0 204]	4 [0 157]	Push side	78.5 [0.1217]	15.7 [3.53]	23.6 [5.31]	31.4 [7.07]	39.3 [8.84]	47.1 [10.60]	55.0 [12.38]
10 [0.394]	4 [0.157]	Pull side	65.9 [0.1021]	13.2 [2.97]	19.8 [4.46]	26.4 [5.94]	33.0 [7.43]	39.5 [8.89]	46.1 [10.37]

Bore Size and Stroke

	mm [in.]
Bore size	Standard strokes
4.5 [0.177]	5 ^{Note} , 10
6 [0.236]	5 ^{Note} , 10, 15
8 [0.315]	5 ^{Note} , 10, 15 ^{Note} , 20
10 [0.394]	5 ^{Note} , 10, 15 ^{Note} , 20, 30

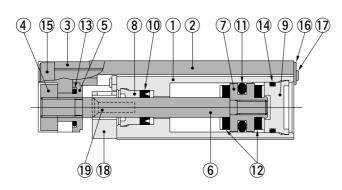
Note: The collar packed is used in these strokes.

Remark: For details about the dimensions of additional parts, see p.32.

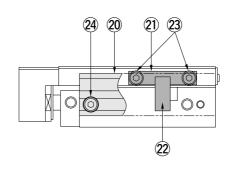

Mass

S-MGA1

S-MGA2, 3, 4, 5


g [oz.] Additional mass Stroke Without magnet and With magnet and Model Sensor switch (1 pc.) mm sensor rail sensor rail ZE 🗆 🗆 A ZE 🗆 🗆 B 5 45 [1.59] 49 [1.73] CS-MGA ☐ 4.5 15 [0.53] 35 [1.23] 10 45 [1.59] 49 [1.73] 5 61 [2.15] 66 [2.33] CS-MGA□6 10 61 [2.15] 66 [2.33] 15 [0.53] 35 [1.23] 15 69 [2.43] 75 [2.65] 5 87 [3.07] 92 [3.25] 10 87 [3.07] 92 [3.25] CS-MGA□8 15 [0.53] 35 [1.23] 15 108 [3.81] 114 [4.02] 20 108 [3.81] 114 [4.02] 114 [4.02] 5 109 [3.84] 114 [4.02] 10 109 [3.84] 142 [5.01] CS-MGA □ 10 15 136 [4.80] 15 [0.53] 35 [1.23] 20 136 [4.80] 142 [5.01] 170 [6.00] 30 163 [5.75]

CS-MGA ☐ 4.5



CS-MGA 6, 8 4 15 3 13 5 8 10 1 2 7 11 14 9 16 17

CS-MGA □ 10

CS-MGAS□(With magnet and sensor rail)

Locating pin

Major Parts and Materials

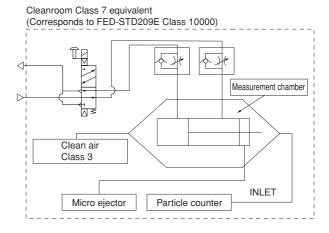
No.	Model	CS-MGA□4.5	CS-MGA□6	CS-MGA□8	CS-MGA□10								
1	Body		Stainless steel (heat treated)										
2	Table		Stainless steel (heat treated)										
3	Plate		Aluminum alloy (special wear-resistant treatment)										
4	Nut A		Stainle	ss steel									
5	Nut B		Stainle	ss steel									
6	Piston rod		_		Stainless steel								
7	Piston ^{Note}		Stainless steel		Aluminum alloy (special rust prevention treatment)								
8	Rod cap		Oil impregnated plasti	c bushing (polyacetal)									
9	Head cap			stic									
10	Rod seal		Synthetic ru	ibber (NBR)									
11)	Piston seal		Synthetic ru	ibber (NBR)									
12	Bumper	_		Synthetic rubber (urethane)									
13	O-ring		Synthetic ru	ibber (NBR)									
14	O-ring		Synthetic ru	ibber (NBR)									
15	Bolt		Stainle	ss steel									
16	Holder plate		Stainle	ss steel									
	Screw		Stainle	ss steel									
18	Dust collecting block		Aluminum all	oy (anodized)									
19	Screw		Stainle	ss steel									
20	Sensor rail		Aluminum all	oy (anodized)									
21)	Magnet holder		Aluminum all	oy (anodized)									
22	Magnet		Plastic	magnet									
23	Bolt		Stainle	ss steel									
24	Bolt		Stainle	ss steel									
25	Locating pin		Steel (hea	at treated)									

Note: In CS-MGA 4.5, CS-MGA 6 and CS-MGA 8, a piston and piston rod are combined as single-piece construction.

Evaluations of Cleanliness (Mini Guide Sliders)

There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specification. Koganei has therefore independently established our in-house measurement methods, to conduct the cleanliness evaluation.

The number of particles in the Mini Guide Slider Cleanroom Specification is measured as shown in the method below.


1. Measurement sample

① CS-MGA10×10 (no load)

2 CS-MGA20 × 60-SS2 (load 2.5kg [5.5lbf.])

2. Measurement conditions

2-1 Test circuit: with suction from dust collection port

2-2 Operating conditions of the tested cylinder

Operating frequency: CS-MGA10/1Hz, CS-MGA20/0.5Hz

Average speed: 300mm/s [12in./sec.] Applied pressure: 0.5MPa [73psi.]

Suction condition: Microejector ME05, Primary side 0.5MPa [73psi.] applied, Tube ϕ 6 [0.236in.]

Mounting direction: CS-MGA10/Vertical, CS-MGA20/Horizontal

Chamber volume: 8.3 ℓ [0.293ft.3]

3. Particle counter

Manufacturer/model: RION/KM20 Suction flow rate: 28.3 \(\ell \) /min [1ft.3/min.]

Particle diameter: 0.1 μ m, 0.2 μ m, 0.3 μ m, 0.5 μ m, 0.7 μ m, 1.0 μ m

4. Measurement method

4-1 Confirmation of number of particles in the measurement system

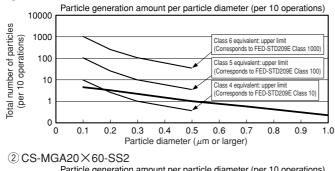
Under the conditions in the above 1 and 2, using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.

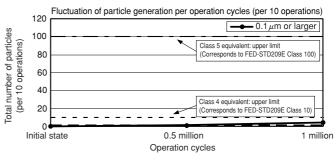
4-2 Measurement under operation

Under the conditions in the above 1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.

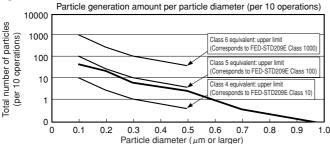
4-3 Reconfirmation

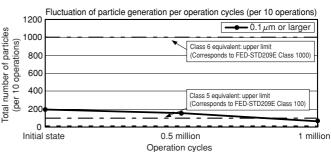
Performed the measurement in 4-1 again, to reconfirm the number of particles in the measurement system.


4-4 Measurement value conversion

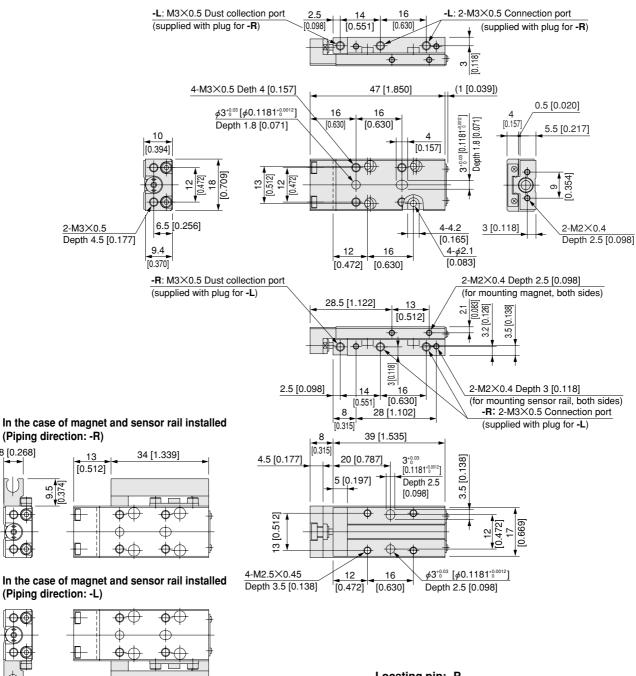

Total value of last 18 minutes of 4-2 converted into number per 10 cylinder operations.

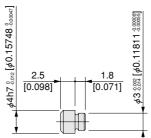
5. Measurement results Note


With suction from dust collection port

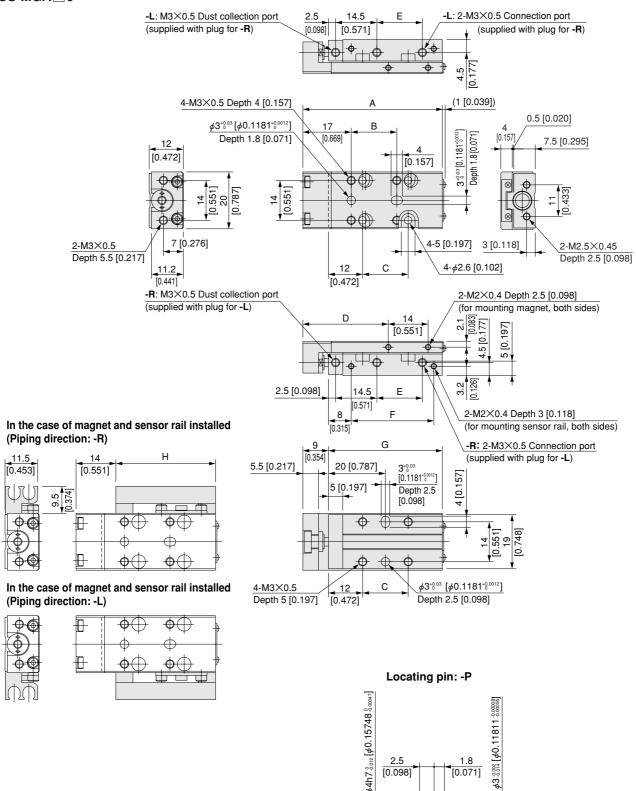

① CS-MGA10×10

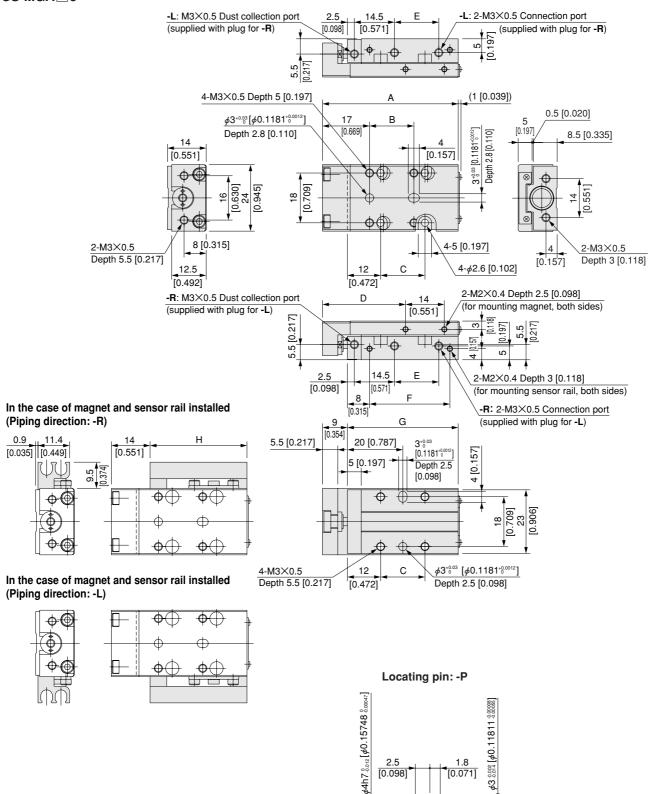
10000




Note: The graphs by particle diameter are based on measurements after 1 million operations of products

CS-MGA 4.5

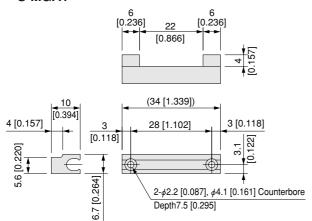

6.8 [0.268]



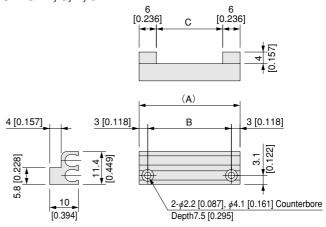
CS-MGA□6

Stroke	Α	В	С	D	E	F	G	Н
5	49 [1.929]	16 [0.630]	16 [0.630]	30 [1.181]	16 [0.630]	29 [1.142]	40 [1.575]	35 [1.378]
10	49 [1.929]	16 [0.630]	16 [0.630]	30 [1.181]	16 [0.630]	29 [1.142]	40 [1.575]	35 [1.378]
15	54 [2.126]	21 [0.827]	21 [0.827]	35 [1.378]	21 [0.827]	34 [1.339]	45 [1.772]	40 [1.575]

CS-MGA □8

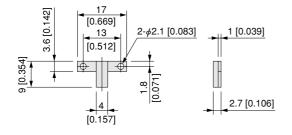

Stroke	Α	В	С	D	E	F	G	Н
5	49 [1.929]	16 [0.630]	16 [0.630]	30 [1.181]	16 [0.630]	29 [1.142]	40 [1.575]	35 [1.378]
10	49 [1.929]	16 [0.630]	16 [0.630]	30 [1.181]	16 [0.630]	29 [1.142]	40 [1.575]	35 [1.378]
15	59 [2.323]	26 [1.024]	26 [1.024]	40 [1.575]	26 [1.024]	39 [1.535]	50 [1.969]	45 [1.772]
20	59 [2.323]	26 [1.024]	26 [1.024]	40 [1.575]	26 [1.024]	39 [1.535]	50 [1.969]	45 [1.772]

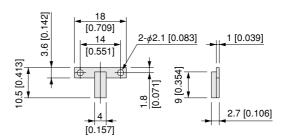
CS-MGA □ 10 -L: M3×0.5 Dust collection port -L: 2-M3×0.5 Conection port 2.5 15 [0.098] (supplied with plug for -R) [0.591] (supplied with plug for -R) (1 [0.039]) 4-M3×0.5 Depth 5 [0.197] 0.5 [0.020] $\phi 3^{+0.03} [\phi 0.1181^{+0.0012}_{0}]$ 18 [0.709] В 5 [0.197] 3+6.03 [0.1181+6,0012] Depth 2.8 [0.110] 10.5 [0.413] Depth 2.8 [0.110] 16 [0.630] [0.157] **♦** 18 [0.709] .024] 19 [0.748] 16 [0.630] 26 [1. 9 [0.354] 2-M3×0.5 4-6 [0.236] 2-M3×0.5 Depth 3 [0.118] Depth 7 [0.276] [0.157] 14.5 12 $4-\phi 3.2 [0.126]$ [0.571] [0.472] 2-M2×0.4 Depth 2.5 [0.098] -R: M3×0.5 Dust collection port D 14 (for mounting magnet, both sides) (supplied with plug for -L) [0.551] • - [0] 6.5 [0.256] 2-M2×0.4 Depth 3 [0.118] 2.5 15 (for mounting sensor rail, both sides) [0.098] [0.591] F 8 In the case of magnet and sensor rail installed -R: 2-M3×0.5 Connction port [0.315] (Piping direction: -R) (supplied with plug for -L) 11 [0.433] 1 [0.039] 11.4 16 3^{+0.03} [0.1181^{+0.00} 20 [0.787] [0.114] [0.449] [0.630] 4 [0.157] 5 [0.197] Depth 2.5 [0.098] \oplus [0.984] \oplus φ3^{+0.03} [φ0.1181^{+0.0012}] 4-M4×0.7 In the case of magnet and sensor rail installed Depth 7 [0.276] [0.472] Depth 2.5 [0.098] (Piping direction: -L) Locating pin: -P φ4h7-8,012 [φ0.15748-8,00047] $\phi 3.0002 [\phi 0.11811.000005]$ 2.5 1.8 [0.098] [0.071]


Stroke	Α	В	С	D	Е	F	G	Н
5	52 [2.047]	16 [0.630]	16 [0.630]	31 [1.220]	16 [0.630]	29 [1.142]	41 [1.614]	35 [1.378]
10	52 [2.047]	16 [0.630]	16 [0.630]	31 [1.220]	16 [0.630]	29 [1.142]	41 [1.614]	35 [1.378]
15	62 [2.441]	26 [1.024]	26 [1.024]	41 [1.614]	26 [1.024]	39 [1.535]	51 [2.008]	45 [1.772]
20	62 [2.441]	26 [1.024]	26 [1.024]	41 [1.614]	26 [1.024]	39 [1.535]	51 [2.008]	45 [1.772]
30	72 [2.835]	36 [1.417]	36 [1.417]	51 [2.008]	36 [1.417]	49 [1.929]	61 [2.402]	55 [2.165]

Sensor rail

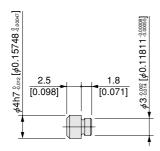
S-MGA1


S-MGA2, 3, 4, 5


Model	А	В	С
S-MGA2	35 [1.378]	29 [1.142]	23 [0.906]
S-MGA3	40 [1.575]	34 [1.339]	28 [1.102]
S-MGA4	45 [1.772]	39 [1.535]	33 [1.299]
S-MGA5	55 [2.165]	49 [1.929]	43 [1.693]

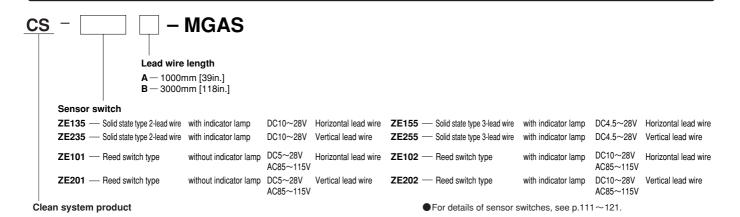
Magnet

M-MGA1

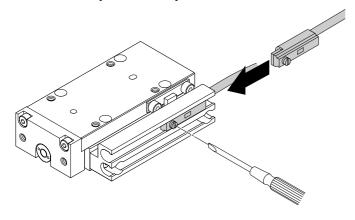


M-MGA2

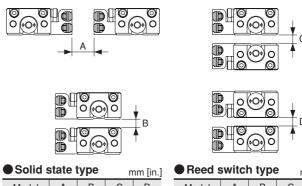
Locating pin


P-MGA1

MINI GUIDE SLIDERS


Sensor Switches

Order Codes (for Sensor Switches Only)


Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the Mini Guide Slider
- Tighten the mounting screw with a tightening torque of 0.1 ~ 0.2N ⋅ m [0.9 ~ 1.8in ⋅ lbf].

When Mounting Sensor Switches in Close Proximity

When mounting actuators with sensor switches in close proximity, install the actuator so that it exceeds the values in the table below.

● Solid s	n	mm [in.]		
Model	Α	В	С	D
MGAS4.5	4	2	3	5
	[0.157]	[0.079]	[0.118]	[0.197]
MGAS6	3	2	4	4
	[0.118]	[0.079]	[0.157]	[0.157]
MGAS8	3	2	4	4
	[0.118]	[0.079]	[0.157]	[0.157]
MGAS10	3	2	4	4
	[0.118]	[0.079]	[0.157]	[0.157]

Reed switch type mm											
Model	Α	В	С	D							
MGAS4.5	2	2	2	2							
	[0.079]	[0.079]	[0.079]	[0.079]							
MGAS6	2	2	4	2							
	[0.079]	[0.079]	[0.157]	[0.079]							
MGAS8	2	2	4	2							
	[0.079]	[0.079]	[0.157]	[0.079]							
MGAS10	2	2	4	2							
	[0.079]	[0.079]	[0.157]	[0.079]							

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

● Operating range: ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

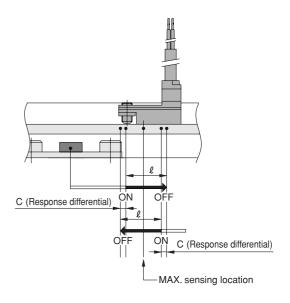
Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

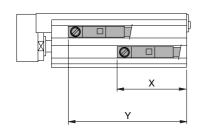
Solid state type

mm [in.] Model MGAS4.5 MGAS10 MGAS6 MGAS8 1.5~3.2 [0.059~0.126] Operating range: ℓ Response differential: C 0.2 [0.008] or less MAX. sensing location Note 6 [0.236]

Remark: The above table shows reference values.


Note: The distance from the end of the opposite side of the lead wire.

Reed switch type


mm [in.] Model MGAS4.5 MGAS8 MGAS10 MGAS6 Operating range: ℓ 3.0~6.0 [0.118~0.236] Response differential: C 1.5 [0.059] or less MAX. sensing location Note 10 [0.394]

Remark: The above table shows reference values.

Note: The distance from the end of the opposite side of the lead wire.

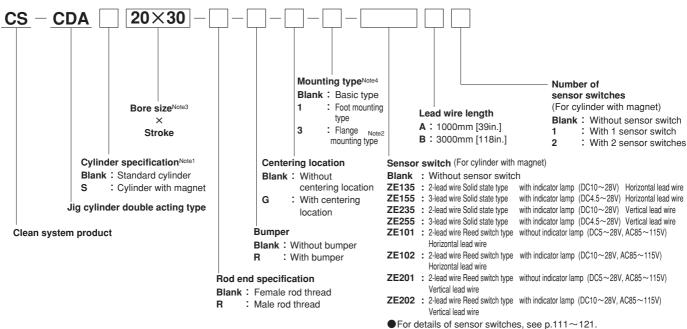
Mounting Location of End of Stroke Detection Sensor Switch

● Solid state type mm [in.											nm [in.]			
Model	MGAS4.5 MGAS6					MGAS8				MGAS10				
Stroke	5	10	5	10	15	5	10	15	20	5	10	15	20	30
Х	18 [0.709]	19 [0.748]	19 [0.748]	19 [0.748]	19 [0.748]	19 [0.748]								
Υ	23 [0.906]	28 [1.102]	23 [0.906]	28 [1.102]	33 [1.299]	23 [0.906]	28 [1.102]	33 [1.299]	38 [1.496]	24 [0.945]	29 [1.142]	34 [1.339]	39 [1.535]	49 [1.929]

● Reed switch type mm [in.]														
Model	MGA	S4.5	MGAS6			MGAS8				MGAS10				
Stroke	5	10	5	10	15	5	10	15	20	5	10	15	20	30
Х	22 [0.866]	23 [0.906]	23 [0.906]	23 [0.906]	23 [0.906]	23 [0.906]								
Y	27 [1.063]	32 [1.260]	27 [1.063]	32 [1.260]	37 [1.457]	27 [1.063]	32 [1.260]	37 [1.457]	42 [1.654]	28 [1.102]	33 [1.299]	38 [1.496]	43 [1.693]	53 [2.087]

Double Acting Type

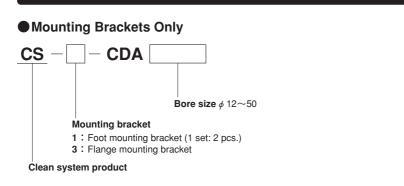
Symbol


Specifications

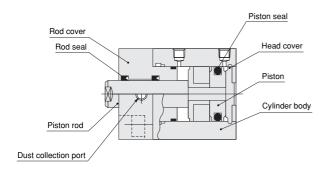
Item	Bore size mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]		
Operating type			Double acting type							
Media					Air					
Operating pressure range	MPa [psi.]		0.1~1.0 [15~145] 0.							
Proof pressure	MPa [psi.]				1.5 [218]					
Operating temperature range	°C [°F]				0~60 [32~140]				
Operating speed range	mm/s [in./sec.]			30~500 [1.2~19.7]			30~300 [1.2~11.8]		
Cushion				Rubb	er bumper (Opt	ional)				
Lubrication		Not required								
Port size			M52	×0.8		Rc	:1/8	Rc1/4		

Bore Size and Stroke

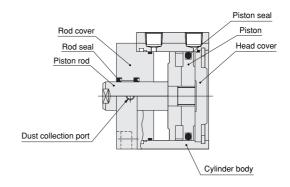
			mm [in.						
O	Dava sina	Standard	Standard strokes						
Operating type	Bore size	Standard cylinder	Cylinder with magnet						
	12 [0.472]	F 40 45 00 05 00	5 40 45 00 05 00						
	16 [0.630]	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30						
	20 [0.787]	5 40 45 00 05 00 05 40 45 50	5 40 45 00 05 00 05 40 45 50						
Double acting type	25 [0.984]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50						
acting type	32 [1.260]	F 40 45 00 05 00 05 40 45 50 75 400	5 40 45 00 05 00 05 40 45 50 75 400						
	40 [1.575]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100						
	50 [1.969]	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100						


Remarks: 1. Stroke tolerance ${}^{+1}_0 \left[{}^{+0.039}_0 \right]$ 2. In most cases, body cutting is used for the non-standard strokes. However, body cutting is not used for strokes of 5mm [0.197in.] or less for ϕ 12 [0.472] $\sim \phi$ 40 [1.575], and strokes of 10mm [0.394in.] or less for ϕ 50 [1.969]. The collar packed is used for these cases.

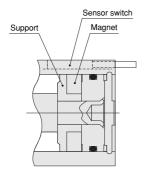
Notes: 1. In the standard cylinder, a magnet for the sensor switch is not built-in.

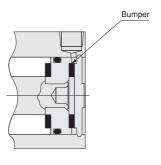

- 2. Cannot be mounted on rod side, with centering location (-G) option.
- 3. See table for bore size and stroke.
- 4. Mounting brackets are included at shipping.

Order Codes of Additional Parts (To be ordered separately)



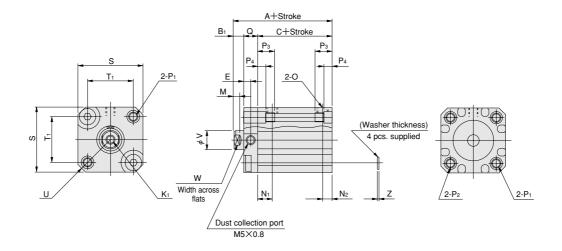
Inner Construction and Major Parts


- Double acting type
- \bullet ϕ 12 [0.472in.] \sim ϕ 25 [0.984in.]


$\bullet \phi$ 32 [1.260in.] $\sim \phi$ 50 [1.969in.]

Cylinder with magnet

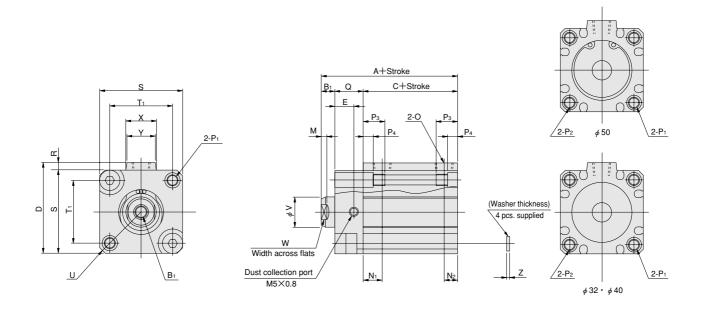
With bumper


Major Parts and Materials

Parts	Materials
Cylinder body	Aluminum alloy (anodized)
Piston	Aluminum alloy (special rust prevention treatment)
Piston rod	Stainless steel (chrome plated)
Seal	Synthetic rubber (NBR)
Rod cover	Aluminum alloy (special wear-resistant treatment)
Head cover	Aluminum alloy (anodized)
Snap ring	Steel (nickel plated)
Spacer	Aluminum alloy (special rust prevention treatment)
Bumper	Synthetic rubber (NBR)
Magnet	Plastic magnet
Support	Aluminum alloy (special rust prevention treatment)

Seals

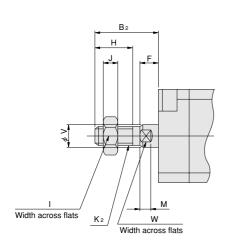
Parts	Rod seal	Piston seal	Tube	gasket
Bore mm	(2 pcs.)	FISION Seal	Rod side	Head side
12	MYR-6	PSD-12	Y090260	None
16	MYR-8	PSD-16	Y090207	None
20	MYR-10	PSD-20	Y090216	None
25	MYR-12	PSD-25	Y090210	None
32	MYR-16	PSD-32	L090084	None
40	MYR-16	PSD-40	L090151	None
50	MYR-20	PSD-50	L090174	L090106

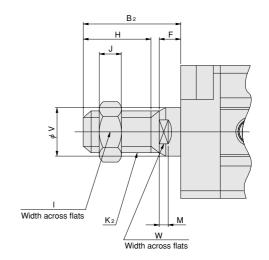

Φ 12 \sim ϕ 25

Type Bore Code	Standa	rd cylinde	er (CDA)	Cylinder v	with magne	et (CDAS)		rd cylind per (CD B ₁		Cylindo and bur		nagnet DAS-R)	E	K 1	М	N ₁	N ₂	0
12 [0.472]	32 [1.260]	5 [0.197]	17 [0.669]	37 [1.457]	5 [0.197]	22 [0.866]	37 [1.457]	5 [0.197]	22 [0.866]	42 [1.654]	5 [0.197]	27 [1.063]	5 [0.197]	M3×0.5 Depth 6 [0.236]	3 [0.118]	8 [0.315]	5 [0.197]	M5×0.8
16 [0.630]	32.5 [1.280]	5.5 [0.217]	17 [0.669]	37.5 [1.476]	5.5 [0.217]	22 [0.866]	37.5 [1.476]	5.5 [0.217]	22 [0.866]	42.5 [1.673]	5.5 [0.217]	27 [1.063]	5 [0.197]	M4×0.7 Depth8 [0.315]	3 [0.118]	8 [0.315]	5 [0.197]	M5×0.8
20 [0.787]	35 [1.378]	5.5 [0.217]	19.5 [0.768]	45 [1.772]	5.5 [0.217]	29.5 [1.161]	40 [1.575]	5.5 [0.217]	24.5 [0.965]	50 [1.969]	5.5 [0.217]	34.5 [1.358]	5 [0.197]	M5×0.8 Depth10 [0.394]	3 [0.118]	10.5 [0.413]	5 [0.197]	M5×0.8
25 [0.984]	42 [1.654]	6 [0.236]	21 [0.827]	52 [2.047]	6 [0.236]	31 [1.220]	47 [1.850]	6 [0.236]	26 [1.024]	57 [2.244]	6 [0.236]	36 [1.417]	10 [0.394]	M6×1 Depth10 [0.394]	3 [0.118]	10.5 [0.413]	5 [0.197]	M5×0.8

Bore Code	P ₁	P ₂	Рз	P ₄	Q	S	T ₁	U	V	W	Z
12 [0.472]	ϕ 4.3 [0.169] (Thru hole) Counterbore ϕ 6.5 [0.256] (Both sides) and M5 \times 0.8 (Both sides)	Counterbore ϕ 6.5 [0.256] and M5 \times 0.8	9.5 [0.374]	4.5 [0.177]	10 [0.394]	25 [0.984]	16.3 [0.642]	R16 [0.630]	6 [0.236]	5 [0.197]	1 [0.039]
16 [0.630]	ϕ 4.3 [0.169] (Thru hole) Counterbore ϕ 6.5 [0.256] (Both sides) and M5 \times 0.8 (Both sides)	Counterbore <i>ϕ</i> 6.5 [0.256] and M5×0.8	9.5 [0.374]	4.5 [0.177]	10 [0.394]	29 [1.142]	19.8 [0.780]	R19 [0.748]	8 [0.315]	6 [0.236]	1 [0.039]
20 [0.787]	ϕ 4.3 [0.169] (Thru hole) Counterbore ϕ 6.5 [0.256] (Both sides) and M5 \times 0.8 (Both sides)	Counterbore <i>ϕ</i> 6.5 [0.256] and M5 × 0.8	9.5 [0.374]	4.5 [0.177]	10 [0.394]	34 [1.339]	24 [0.945]	R22 [0.866]	10 [0.394]	8 [0.315]	1 [0.039]
25 [0.984]	ϕ 5.1 [0.201] (Thru hole) Counterbore ϕ 8 [0.315] (Both sides) and M6 \times 1 (Both sides)	Counterbore ϕ 8 [0.315] and M6×1	11.5 [0.453]	5.5 [0.217]	15 [0.591]	40 [1.575]	28 [1.102]	R25 [0.984]	12 [0.472]	10 [0.394]	1 [0.039]

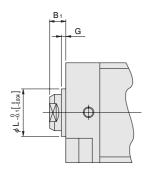
$\bullet \phi 32 \sim \phi 50$


Туре		rd cylinde	r (CDA)	Cylinder v	vith magne	et (CDAS)		rd cylind per (CD			er with n	nagnet DAS-R)	D	Е	E K1		N ₁	N ₂
Bore Size Code	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С	Α	B ₁	С						
32 [1.260]	45	7	23	55	7	33	50	7	28	55	7	33	48.5	10	M8×1.25	3	10 [0.394]	7 [0.276]
	[1.772]	[0.276]	[0.906]	[2.165]	[0.276]	[1.299]	[1.969]	[0.276]	[1.102]	[2.165]	[0.276]	[1.299]	[1.909]	[0.394]	Depth12 [0.472]	[0.118]	(9.5 [0.374])	(6 [0.236])
40 [1.575]	48	7	26	58	7	36	48	7	26	58	7	36	56.5	10	M8×1.25	3	10.5	7
	[1.890]	[0.276]	[1.024]	[2.283]	[0.276]	[1.417]	[1.890]	[0.276]	[1.024]	[2.283]	[0.276]	[1.417]	[2.224]	[0.394]	Depth12 [0.472]	[0.118]	[0.413]	[0.276]
50 [1.969]	52	9	28	62	9	38	52	9	28	62	9	38	70	10	M10×1.5	3	11	9.5
	[2.047]	[0.354]	[1.102]	[2.441]	[0.354]	[1.496]	[2.047]	[0.354]	[1.102]	[2.441]	[0.354]	[1.496]	[2.756]	[0.394]	Depth15 [0.591]	[0.118]	[0.433]	[0.374]


Bore Code	0	P ₁	P ₂	P ₃	P ₄	Q	R	S	T ₁	U	V
32 [1.260]	Rc1/8	ϕ 5.1 [0.201] (Thru hole) Counterbore ϕ 8 [0.315] (Both sides) and M6 \times 1 (Both sides)	Counterbore	11.5 [0.453]	5.5 [0.217]	15 [0.591]	4.5 [0.177]	44 [1.732]	34 [1.339]	R29.5 [1.161]	
40 [1.575]	Rc1/8	ϕ 6.9 [0.272] (Thru hole) Counterbore ϕ 9.5 [0.374] (Both sides) and M5 \times 1.25 (Both sides)	Counterbore ϕ 9.5 [0.374] and M5 \times 1.25	15.5 [0.610]	7.5 [0.295]	15 [0.591]	4.5 [0.177]	52 [2.047]	40 [1.575]	R35 [1.378]	16 [0.630]
50 [1.969]	Rc1/4	ϕ 6.9 [0.272] (Thru hole) Counterbore ϕ 11 [0.433] (Both sides) and M5 \times 1.25 (Both sides)	Counterbore ϕ 11 [0.433] and M5 $ imes$ 1.25	16.5 [0.650]	8.5 [0.335]	15 [0.591]	8 [0.315]	62 [2.441]	48 [1.890]	R41 [1.614]	20 [0.787]

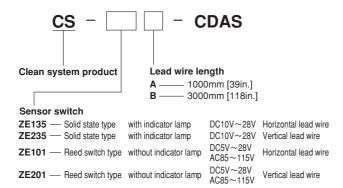
Bore Code	W	Χ	Υ	Z
32 [1.260]	14	15	13.6	1
	[0.551]	[0.591]	[0.535]	[0.039]
40 [1.575]	14	15	13.6	1.6
	[0.551]	[0.591]	[0.535]	[0.063]
50 [1.969]	17	21.6	19	1.6
	[0.669]	[0.850]	[0.748]	[0.063]

Note: Figures in parentheses () are for the cylinder with 5mm [0.197in.] stroke.


$\bullet \phi$ 32 [1.260] $\sim \phi$ 50 [1.969]

Bore Code	B ₂	F	Н	I	J	K ₂	М	V	W
12 [0.472]	17 [0.669]	5 [0.197]	10 [0.394]	8 [0.315]	4 [0.157]	M5×0.8	3 [0.118]	6 [0.236]	5 [0.197]
16 [0.630]	20.5 [0.807]	5.5 [0.217]	13 [0.512]	10 [0.394]	5 [0.197]	M6×1	3 [0.118]	8 [0.315]	6 [0.236]
20 [0.787]	22.5 [0.886]	5.5 [0.217]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	3 [0.118]	10 [0.394]	8 [0.315]
25 [0.984]	24 [0.945]	6 [0.236]	15 [0.591]	14 [0.551]	6 [0.236]	M10×1.25	3 [0.118]	12 [0.472]	10 [0.394]
32 [1.260]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	3 [0.118]	16 [0.630]	14 [0.551]
40 [1.575]	35 [1.378]	7 [0.276]	25 [0.984]	19 [0.748]	8 [0.315]	M14×1.5	3 [0.118]	16 [0.630]	14 [0.551]
50 [1.969]	37 [1.457]	9 [0.354]	25 [0.984]	27 [1.063]	11 [0.433]	M18×1.5	3 [0.118]	20 [0.787]	17 [0.669]

Dimensions of Centering Location mm [in.]


• Not available for bore size ϕ 12 [0.472].

Bore Code	B ₁	G	L
16 [0.630]	5.5 [0.217]	1.5 [0.059]	9.4 [0.370]
20 [0.787]	5.5 [0.217]	1.5 [0.059]	12 [0.472]
25 [0.984]	6 [0.236]	2 [0.079]	15 [0.591]
32 [1.260]	7 [0.276]	2 [0.079]	21 [0.827]
40 [1.575]	7 [0.276]	2 [0.079]	29 [1.142]
50 [1.969]	9 [0.354]	2 [0.079]	38 [1.496]

JIG CYLINDERS C SERIES

Sensor Switches

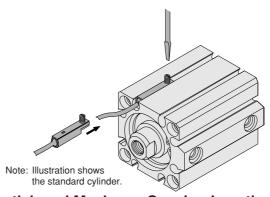
Order Codes (for Sensor Switches Only)

Minimum Cylinder Strokes When Mounting Sensor Switches

●Solid state type mm [in.]										
Bore size	2 pcs. mo	1 pc. mounting								
Dore Size	1-surface mounting	r pc. mounting								
12 [0.472]	30 [1.181]	F [0.407]								
16~100 [0.630~3.937]	10 [0	5 [0.197]								

Note: Two pieces can be mounted with 5mm [0.197in.] stroke. Take note that overlapping may occur, however.

Reed switch type


<u> </u>	, 60		11111 [111.]	
Bore size	2 pcs. n	nounting	1 no mounting	
Dore Size	1-surface mounting	1 pc. mounting		
12 [0.472]	30 [1.181]	10.00.0041		
16~100 [0.630~3.937]	10 [0	.394]	10 [0.394]	

ZE155 — Solid state type ZE255 — Solid state type			Horizontal lead wire Vertical lead wire
ZE102 — Reed switch type	with indicator lamp	DC10V~28V AC85~115V	Horizontal lead wire
ZE202 — Reed switch type	with indicator lamp	DC10V~28V AC85~115V	Vertical lead wire

● For details of sensor switches, see p.111 ~ 121.

Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of $0.1 \sim$ 0.2N·m [0.9~1.8in·lbf].

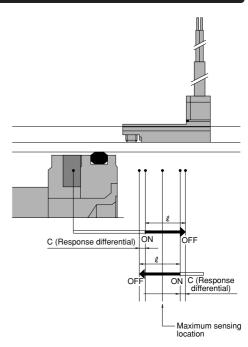
Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range : ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

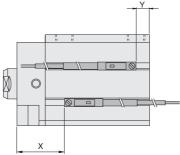
Response differential : C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.


Solid state type

• • • • • • • • • • • • • • • • • • • •	11											
ltem Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.937]		
Operating range : ℓ	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]		3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]	4.5~9.5 [0.177~0.374]	4.5~9.0 [0.177~0.354]		
Response differential : C		1.0 [0.039] or less										
Maximum sensing location		6 [0.236]										

Remark: The above table shows reference values.


Reed switch type mm [in.													
Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.937]			
Operating range : ℓ				10~15.5 [0.394~0.610]		8.5~14 [0.335~0.551]			11~16 [0.433~0.630]				
Response differential : C	1.0 [0.039] or less			3.0 [0.118] or less	2.5 [0.098] or less								
Maximum sensing location		10 [0.394]											

Remark: The above table shows reference values.

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the location shown in the diagram below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

■Solid state type

Double acting type

mm [in.]

Code	Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]
_	Standard type	17 [0.669]	17 [0.669]	21 [0.827]	26 [1.024]	28.5 [1.122]	29.5 [1.161]	27.5 [1.083]
^	With bumper (-R)	20 [0.787]	20 [0.787]	25 [0.984]	31 [1.220]	30.5 [1.201]	31.5 [1.240]	30.5 [1.201]
v	Standard type	4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]	8.5 [0.335]	10.5 [0.413]	14.5 [0.571]
Ť	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]

■Reed switch type

Double acting type

mm [in.]

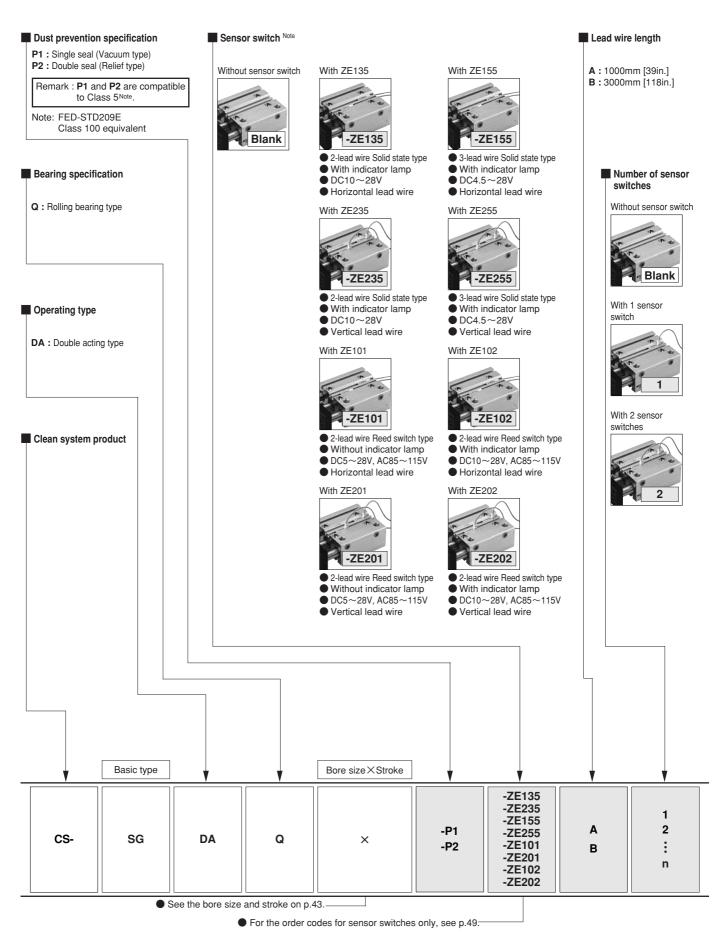
	_		3 -71-						[]
ĺ	Code	Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]
•	_	Standard type	12.5 [0.492]	12.5 [0.492]	16.5 [0.650]	21.5 [0.846]	24 [0.945]	25 [0.984]	23 [0.906]
	^	With bumper (-R)	15.5 [0.610]	15.5 [0.610]	20.5 [0.807]	26.5 [1.043]	26 [1.024]	27 [1.063]	26 [1.024]
	v	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]
	ľ	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]

Symbol

Caution: If used when a lateral load is applied, or used as a lifter, load should be 20% or less of the standard type.

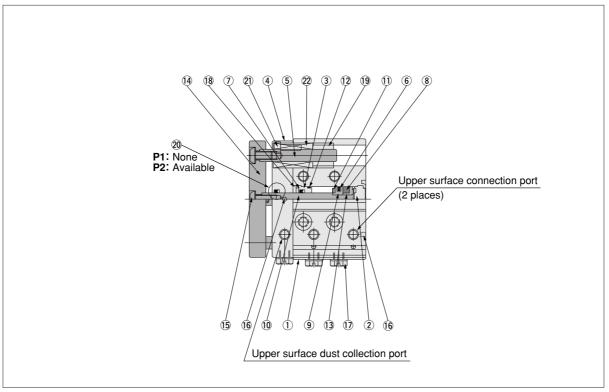
Specifications

Item Bore size mm [in.	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]				
Operating type				Double a	cting type							
Media				Α	ir							
Operating pressure range MPa [psi.]	0.	2~1.0 [29~14	l5]		0.1	5~1.0 [22~14	45]					
Proof pressure MPa [psi.]		1.5 [218]										
Operating temperature range °C [°F]				0~60[3	32~140]							
Operating speed range mm/s [in./sec.]				100~300	[3.9~11.8]							
Cushion				Rubber	bumper							
Lubrication				Proh	bited							
Port size	M5×0.8 Rc1/8 Rc1/4											
Dust collection port size				M5>	<0.8							
Stroke tolerance mm [in.]				+1.5	+0.059]							


Remark: Since plugs for connection ports in ϕ 20 \sim ϕ 63 are provided, care should be taken not to get sealant into the cylinder when assembling the plugs after applying sealant, etc.

Bore Size and Stroke

		mm [in.]
Bore size	Standard strokes	Maximum available stroke
12 [0.472]	10, 20, 30, 40, 50, 75, 100	100
16 [0.630]	10, 20, 30, 40, 30, 73, 100	100
20 [0.787]		
25 [0.984]		
32 [1.260]	10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200	200
40 [1.575]	10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200	200
50 [1.969]		
63 [2.480]		


Remarks: 1. Non-standard strokes are available at 5mm [0.197in.] intervals. Since the manufacturing method is collar packed, the total length, etc., are the same dimensions as the next size up standard stroke cylinder.

2. Strokes of 75mm [2.953in.] or longer, use long bushing type.

Note: For details of sensor switches, see p.111~121.

■ Jig Cylinder with Guide (Diagram shows ϕ 12 [0.472in.].)

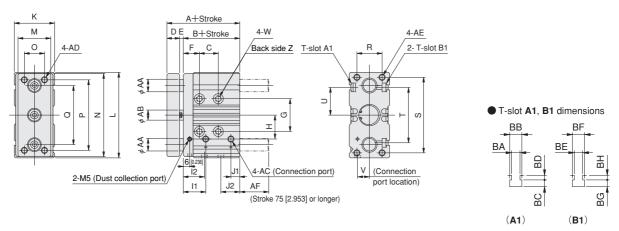
Remark: The number of bearings for 50mm [1.969in.] stroke or shorter is 1 bearing per shaft. At 75mm [2.953in.] stroke or longer, 2 bearings per shaft. The plate, piston rod, and guide rod cannot be disassembled.

Major Parts and Materials

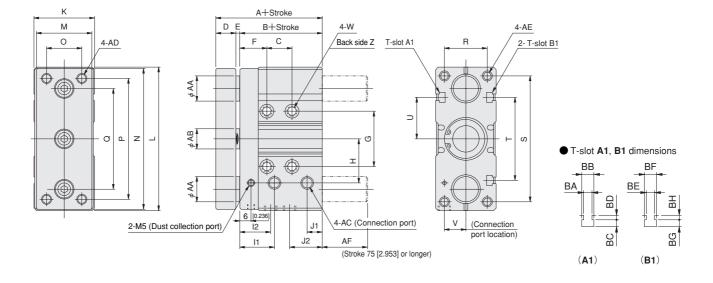
No.	Parts Bore mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]				
1)	Cylinder body		Aluminum alloy (anodized)										
2	Head cover		Aluminum alloy (anodized)										
3	Rod cover			Aluminum	alloy (special	wear-resistant	treatment)						
4	Dust prevention cover				Aluminum alle	oy (anodized)							
(5)	Guide rod				Stainle	ss steel							
6	Piston seal				Synthetic ru	ibber (NBR)							
7	Rod seal		Synthetic rubber (NBR)										
8	Magnet		Plastic magnet										
9	Piston			Aluminum	alloy (special r	ust prevention	treatment)						
10	Piston rod			Sta	inless steel (ha	ard chrome pla	ted)						
11)	Bumper				Synthetic ru	ibber (NBR)							
12	O-ring				Synthetic ru	ibber (NBR)							
13	Support			Aluminum	alloy (special r	ust prevention	treatment)						
14)	Plate				Aluminum all	oy (anodized)							
15	Bolt		Steel (nic	ckel plated)			Stainles	s steel					
16	Steel ball				Stainle	ss steel							
17	Plug	Brass (nic	kel plated)	Stair	nless steel (sup	plied at shippi	ng for φ 20 [0.	787]∼ <i>ϕ</i> 63 [2.	480])				
18	Snap ring		Steel (nickel plated)										
19	Collar			Aluminum	alloy (special r	ust prevention	treatment)						
20	Dust leak prevention seal				Synthetic ru	ibber (NBR)							
21)	Bolt				Stainle	ss steel							
22	Rolling bearing			Steel, p	lastic (low dust	generation tre	eatment)						

Seals

Туре		Jig cylinders	with guides	
Parts	Rod seal	Piston seal	Tube	gasket
Bore size mm	Dust leak prevention seal	1 Istori scar	Rod side	Head side
12	MYR-6	PSD-12	Y090260	None
16	MYR-8	PSD-16	Y090207	Y090207
20	MYR-10	PSD-20	Y090216	Y090216
25	MYR-12	PSD-25	Y090210	Y090210
32	MYR-16	PSD-32	L090084	L090084
40	MYR-16	PSD-40	L090151	L090151
50	MYR-20	PSD-50	L090174	L090174
63	MYR-20	PSD-63	L090180	L090180


Mass

					g [oz.]
	Туре	Jig cylinders	with guides	Opt	ions
	Mass	Zero	Additional mass	Additional mass	of sensor switch
Bore size m		stroke mass	for each 1mm [0.0394in.] stroke	ZE□□□A	ZE□□□B
12	50 [1.969] st or shorter	158 [5.57]	3.63 [0.1280]		
[0.472]	75 [2.953] st or longer	168 [5.93]	3.63 [0.1280]		
16	50 [1.969] st or shorter	256 [9.03]	5.17 [0.1824]		
[0.630]	75 [2.953] st or longer	297 [10.48]	5.17 [0.1824]		
20	50 [1.969] st or shorter	440 [15.52]	8.4 [0.296]		
[0.787]	75 [2.953] st or longer	521 [18.38]	8.4 [0.296]		
25	50 [1.969] st or shorter	642 [22.65]	10.12 [0.3570]		
[0.984]	75 [2.953] st or longer	720 [25.40]	10.12 [0.3570]	15 [0 50]	05 [4 00]
32	50 [1.969] st or shorter	1012 [35.70]	13.71 [0.4836]	15 [0.53]	35 [1.23]
[1.260]	75 [2.953] st or longer	1227 [43.28]	13.71 [0.4836]		
40	50 [1.969] st or shorter	1230 [43.39]	15.78 [0.5566]		
[1.575]	75 [2.953] st or longer	1530 [53.97]	15.78 [0.5566]		
50	50 [1.969] st or shorter	2082 [73.44]	23.27 [0.8208]		
[1.969]	75 [2.953] st or longer	2419 [85.33]	23.27 [0.8208]		
63	50 [1.969] st or shorter	2700 [95.24]	26.97 [0.9513]		
[2.480]	75 [2.953] st or longer	3038 [107.16]	26.97 [0.9513]		


Rolling bearing type CS-SGDAQ [

Bore size X Stroke

• *φ* 12 [0.472], *φ* 16 [0.630]

\bullet ϕ 20 [0.787] \sim ϕ 63 [2.480]

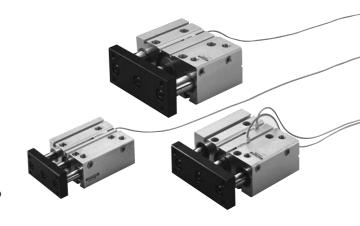
Code		_				С			_	_	_	_					
Bore size	Α	В	10	20	30	Stroke 40	50~100	125 or longer	D	E	F	G	Н	l1	12	J1	J2
12 [0.472]	46 [1.811]	35 [1.378]	15 [0.591]	25 [0.984]	35 [1.378]	45 [1.772]	55 [2.165]	_	8 [0.315]	3 [0.118]	15 [0.591]	22 [0.866]	17 [0.669]	20 [0.787]	19 [0.748]	6 [0.236]	14 [0.551]
16 [0.630]	50 [1.969]	37 [1.457]	15 [0.591]	25 [0.984]	35 [1.378]	45 [1.772]	55 [2.165]	_	10 [0.394]	3 [0.118]	15 [0.591]	26 [1.024]	19 [0.748]	20 [0.787]	19 [0.748]	7.5 [0.295]	16 [0.630]
20 [0.787]	62	46	20	30	40	50	60	110	12	4	16	30	27	21	21	10	20
	[2.441]	[1.811]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.472]	[0.157]	[0.630]	[1.181]	[1.063]	[0.827]	[0.827]	[0.394]	[0.787]
25 [0.984]	64	48	20	30	40	50	60	110	12	4	16	33	29	22	22	10	21
	[2.520]	[1.890]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.472]	[0.157]	[0.630]	[1.299]	[1.142]	[0.866]	[0.866]	[0.394]	[0.827]
32 [1.260]	69	50	20	30	40	50	60	110	15	4	17	44	35	23	20	12	25
	[2.717]	[1.969]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.591]	[0.157]	[0.669]	[1.732]	[1.378]	[0.906]	[0.787]	[0.472]	[0.984]
40 [1.575]	73	54	20	30	40	50	60	110	15	4	17	52	40	24	24	13	25
	[2.874]	[2.126]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.591]	[0.157]	[0.669]	[2.047]	[1.575]	[0.945]	[0.945]	[0.512]	[0.984]
50 [1.969]	80	57	20	30	40	50	60	110	18	5	18	66	52.5	25.5	20	15	31
	[3.150]	[2.244]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.709]	[0.197]	[0.709]	[2.598]	[2.067]	[1.004]	[0.787]	[0.591]	[1.220]
63 [2.480]	80	57	20	30	40	50	60	110	18	5	18	78	60	27	20	14	31
	[3.150]	[2.244]	[0.787]	[1.181]	[1.575]	[1.969]	[2.362]	[4.331]	[0.709]	[0.197]	[0.709]	[3.071]	[2.362]	[1.063]	[0.787]	[0.551]	[1.220]

mm [in.]

													11111 [111.]
Bore size	K	L	М	N	0	Р	Q	R	s	Т	U	VNote	W
12 [0.472]	28 [1.102]	58 [2.283]	22 [0.866]	56 [2.205]	14 [0.551]	48 [1.890]	42 [1.654]	18 [0.709]	51 [2.008]	37 [1.457]	18.5 [0.728]	8.5 [0.335]	φ 4.2 [0.165] (Thru hole) Counterbore φ 8 [0.315] Depth 4.5 [0.177]
16 [0.630]	32 [1.260]	68 [2.677]	26 [1.024]	66 [2.598]	16 [0.630]	56 [2.205]	47 [1.850]	20 [0.787]	60 [2.362]	44 [1.732]	22 [0.866]	9.5 [0.374]	φ 4.2 [0.165] (Thru hole) Counterbore φ 8 [0.315] Depth 4.5 [0.177]
20 [0.787]	40 [1.575]	82 [3.228]	36 [1.417]	80 [3.150]	24 [0.945]	66 [2.598]	58 [2.283]	26 [1.024]	72 [2.835]	54 [2.126]	27 [1.063]	13.5 [0.531]	ϕ 5.2 [0.205] (Thru hole) Counterbore ϕ 9.5 [0.374] Depth 5.5 [0.217]
25 [0.984]	42 [1.654]	92 [3.622]	38 [1.496]	90 [3.543]	26 [1.024]	76 [2.992]	63 [2.480]	30 [1.181]	80 [3.150]	54 [2.126]	27 [1.063]	14.5 [0.571]	ϕ 5.2 [0.205] (Thru hole) Counterbore ϕ 9.5 [0.374] Depth 5.5 [0.217]
32 [1.260]	48 [1.890]	114 [4.488]	44 [1.732]	112 [4.409]	28 [1.102]	96 [3.780]	80 [3.150]	34 [1.339]	100 [3.937]	66 [2.598]	33 [1.299]	17 [0.669]	ϕ 6.8 [0.268] (Thru hole) Counterbore ϕ 11 [0.433] Depth 7 [0.276]
40 [1.575]	54 [2.126]	124 [4.882]	50 [1.969]	122 [4.803]	34 [1.339]	106 [4.173]	90 [3.543]	40 [1.575]	106 [4.173]	82 [3.228]	41 [1.614]	18 [0.709]	ϕ 6.8 [0.268] (Thru hole) Counterbore ϕ 11 [0.433] Depth 7 [0.276]
50 [1.969]	66 [2.598]	150 [5.906]	62 [2.441]	148 [5.827]	42 [1.654]	120 [4.724]	110 [4.331]	44 [1.732]	130 [5.118]	100 [3.937]	50 [1.969]	22 [0.866]	ϕ 8.6 [0.339] (Thru hole) Counterbore ϕ 14 [0.551] Depth 9 [0.354]
63 [2.480]	76 [2.992]	162 [6.378]	72 [2.835]	160 [6.299]	52 [2.047]	132 [5.197]	122 [4.803]	44 [1.732]	144 [5.669]	120 [4.724]	60 [2.362]	24 [0.945]	ϕ 8.6 [0.339] (Thru hole) Counterbore ϕ 14 [0.551] Depth 9 [0.354]

Note: The \boldsymbol{V} dimension shows the side connection port location.

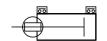
mm [in.]


Bore size Code	z	AA	АВ	AC	AD	AE	AF
12 [0.472]	M5×0.8 Depth 8 [0.315]	6 [0.236]	6 [0.236]	M5×0.8	M4×0.7	M4×0.7 Depth 8 [0.315]	5 [0.197]
16 [0.630]	M5×0.8 Depth 11 [0.433]	8 [0.315]	8 [0.315]	M5×0.8	M5×0.8	M5×0.8 Depth 10 [0.394]	13 [0.512]
20 [0.787]	M6×1 Depth 12 [0.472]	12 [0.472]	10 [0.394]	Rc1/8	M6×1	M6×1 Depth 12 [0.472]	17 [0.669]
25 [0.984]	M6×1 Depth 12 [0.472]	13 [0.512]	12 [0.472]	Rc1/8	M6×1	M6×1 Depth 12 [0.472]	18 [0.709]
32 [1.260]	M8×1.25 Depth 16 [0.630]	16 [0.630]	16 [0.630]	Rc1/8	M8×1.25	M8×1.25 Depth 16 [0.630]	26 [1.024]
40 [1.575]	M8×1.25 Depth 16 [0.630]	16 [0.630]	16 [0.630]	Rc1/8	M8×1.25	M8×1.25 Depth 16 [0.630]	22 [0.866]
50 [1.969]	M10×1.5 Depth 20 [0.787]	20 [0.787]	20 [0.787]	Rc1/4	M10×1.5	M10×1.5 Depth 20 [0.787]	29 [1.142]
63 [2.480]	M10×1.5 Depth 20 [0.787]	20 [0.787]	20 [0.787]	Rc1/4	M10×1.5	M10×1.5 Depth 20 [0.787]	29 [1.142]

mm [in.]

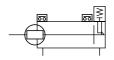
										[]
Bore Code	T-9	slot	ВА	ВВ	вс	BD	BE	BF	BG	ВН
size	A1	B1	DA	55	ВС	טט	DL	DI	В	ы
12 [0.472]	M3×0.5	M4×0.7	3.3 [0.130]	5.8 [0.228]	3 [0.118]	1.5 [0.059]	4.3 [0.169]	7.3 [0.287]	3.5 [0.138]	2.5 [0.098]
16 [0.630]	M4×0.7	M4×0.7	4.3 [0.169]	7.3 [0.287]	3.5 [0.138]	1.5 [0.059]	4.3 [0.169]	7.3 [0.287]	3.5 [0.138]	3 [0.118]
20 [0.787]	M4×0.7	M5×0.8	4.3 [0.169]	7.3 [0.287]	4 [0.157]	3 [0.118]	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]
25 [0.984]	M4×0.7	M5×0.8	4.3 [0.169]	7.3 [0.287]	4 [0.157]	3 [0.118]	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]
32 [1.260]	M5×0.8	M5×0.8	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]
40 [1.575]	M5×0.8	M6×1	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	6.3 [0.248]	10.3 [0.406]	5.5 [0.217]	3 [0.118]
50 [1.969]	M5×0.8	M8×1.25	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	8.3 [0.327]	13.3 [0.524]	7 [0.276]	4.5 [0.177]
63 [2.480]	M5×0.8	M8×1.25	5.3 [0.209]	8.3 [0.327]	4.5 [0.177]	3 [0.118]	8.3 [0.327]	13.3 [0.524]	7 [0.276]	4.5 [0.177]

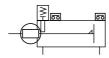
JIG CYLINDERS WITH GUIDES

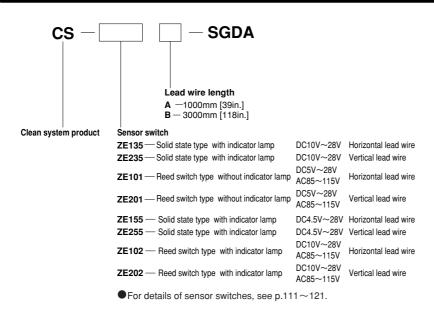

Sensor Switches

Symbols

Standard cylinder






● End keep cylinder (Head side)

Order Codes (for Sensor Switches Only)

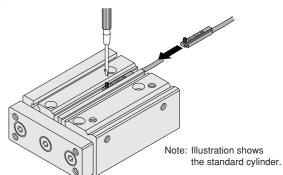
Minimum Cylinder Strokes When Mounting Sensor Switches

Solid state type

mm [in.]

Bore size	2 pcs. m	1 no mounting	
mm [in.]	1-surface mounting	2-surface mounting	1 pc. mounting
12~63 [0.472~2.480]	10 [0	.394]	5 [0.197]

Note: Two pcs. mounting is possible at stroke 5mm. Be aware, however, that overlapping may occur.


Reed switch type

mm [in.]

			[]
Bore size	2 pcs. n	1 pc. mounting	
mm [in.]	1-surface mounting	r pc. mounting	
12~63 [0.472~2.480]	10 [0	.394]	10 [0.394]

Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of 0.1 ~ 0.2N · m [0.9 ~ 1.8in · lbf]

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: &

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

●Solid state type

mm [in.]

Item Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
Operating range: ℓ	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]	
Response differential: C		1.0 [0.039] or less							
Maximum sensing location Note		6 [0.236]							

Note: The maximum sensing location is the distance from the end of the switch on the opposite side of the lead wire.

Remark: The above table shows reference values.

■Reed switch type

mm [in.]

Item Bore size								
Operating range: ℓ	5.5~8 [0.217~0.315]	6.5~9 [0.256~0.354]	10~13 [0.394~0.512]	11.5~15 [0.453~0.591]	9~11.5 [0.354~0.453]	10~13.5 [0.394~0.531]	10.5~14.5 [0.413~0.571]	11~15.5 [0.433~0.610]
Response differential: C	1.0 [0.039] or less	1.5 [0.059] or less						
Maximum sensing location Note	10 [0.394]							

Note: The maximum sensing location is the distance from the end of the switch on the opposite side of the lead wire.

Remark: The above table shows reference values.

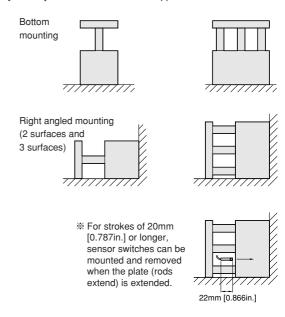
C (Response differential) OFF ON C (Response differential) Maximum sensing location

When Mounting Cylinders with Sensor Switches in Close Proximity

Sensor switch B A

When mounting cylinders in close proximity, install the cylinder so that it exceeds the values in the table below.

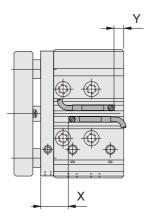
The end plates are the same direction mm [in.]

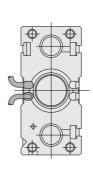

				[]	
Bore size	Solid st	ate type	Reed switch type		
DOTE SIZE	Α	В	Α	В	
12	33 [1.299]		28 [1.102]		
16	37 [1.457]	5 [0.197]	32 [1.260]		
20	45 [1.772]		40 [1.575]		
25	50 [1.969]		42 [1.654]	101 0	
32	56 [2.205]	8 [0.315]	48 [1.890]	0 [0]	
40	62 [2.441]		54 [2.126]		
50	78 [3.071]	10 [0 470]	66 [2.598]		
63	88 [3.465]	12 [0.472]	76 [2.992]		

The end plates are the opposite

direction	า		mm [in.]			
D	Solid st	ate type	Reed switch type			
Bore size	Α	В	Α	В		
12	34 [1.339]		28 [1.102]			
16	38 [1.496]	6 [0.236]	32 [1.260]			
20	46 [1.811]		40 [1.575]			
25	54 [2.126]		42 [1.654]	0 [0]		
32	60 [2.362]	12 [0.472]	48 [1.890]	0 [0]		
40	66 [2.598]		54 [2.126]			
50	84 [3.307]	10 [0 700]	66 [2.598]			
63	94 [3.701]	18 [0.709]	76 [2.992]			

Mounting and Removing Sensor Switches


In Jig Cylinders with Guides of ϕ 12 \sim ϕ 63, be aware that sensor switches cannot be mounted or removed when strokes of 10mm [0.394in.] or shorter installed in the application shown below.



Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown in the diagram below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Jig cylinders with guides

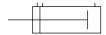
■ Solid state type

mm [in.]

								[]
Code Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Х	19.5 [0.768]	21 [0.827]	24 [0.945]	26 [1.024]	25 [0.984]	26.5 [1.043]	26.5 [1.043]	26.5 [1.043]
Υ	3.5 [0.138]	4.5 [0.177]	10 [0.394]	10 [0.394]	13 [0.512]	15.5 [0.610]	18.5 [0.728]	18.5 [0.728]

■ Reed switch type

mm [in.]


								111111 [111.]
Code Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Х	15.5 [0.610]	17 [0.669]	20 [0.787]	22 [0.866]	21 [0.827]	22.5 [0.886]	22.5 [0.886]	22.5 [0.886]
Υ	[0] 0	0 [0]	6 [0.236]	6 [0.236]	9 [0.354]	11.5 [0.453]	14.5 [0.571]	14.5 [0.571]

LEAN PEN CYLINDERS

Symbols

Double acting type

Single acting push type

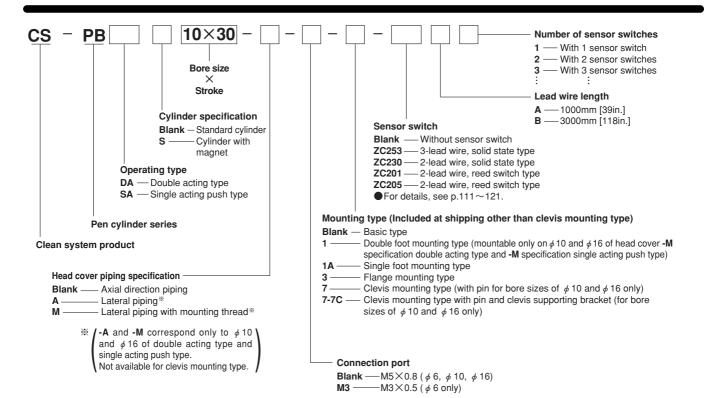
Specifications

Item	Bore mm [in.]	6 [0.236]	10 [0.394] 16 [0.630]			
Operating type		Double acting	type, Single act	ing push type		
Media			Air			
Mounting type			Basic type, Foot type, Flange type, Clevis type (clevis type of ϕ 10 and ϕ 16 only)			
Operating pressure	Double acting type	0.15~0.7 [22~102]	0.1~0.7 [15~102]			
range MPa [psi.]	Single acting push type	0.3~0.7 [44~102]	0.15~0.7 [22~102]			
Proof pressure	MPa [psi.]		1.03 [149]			
Operating temperatur	e range °C [°F]	0	~60 [32~140)]		
Operating speed rang	e mm/s [in./sec.]	50	~300 [2.0~1	1.8]		
Cushion		None	Rubber bumper			
Lubrication		Not required				
Port size		M5×0.8 Note				

Note: M3 \times 0.5 can also be selected at ϕ 6 only.

Bore Size and Stroke

● Doub	ole acting type		mm [in.]
Bore size	Standard strokes Note	Maximum available stroke	Stroke tolerance
6 [0.236]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60	100	
10 [0.394]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 75, 100, 125, 150	150	+1.5 0 [+0.059]
16 [0.630]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 75, 100, 125, 150, 175, 200	200	


Single a	acting ty	ре		mm [in.]
Operating type	Bore size	Standard strokes Note	Maximum available stroke	Stroke tolerance
Single	6 [0.236]	E 10 1E 00 0E 00	75	+1.5
acting	10 [0.394]	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60	105	[+0.059]
push type	16 [0.630]	35, 40, 45, 50, 55, 60	120	

Note: The non-standard strokes:

For strokes divisible by 5, cylinder tube cutting is used.

For strokes not divisible by 5, a collar is packed to the next size up stroke of cylinder tube.

Order Codes

Order Codes for Mounting Brackets Only

Bore size mm [in.]	6 [0.236]	10 [0.394]	16 [0.630]
Single foot bracket	CS-1A-PBDA6	CS-1A-PBDA10	CS-1A-PBDA16
Double foot bracket	CS-1-PBDA6	CS-1-PBDA10	CS-1-PBDA16
Flange bracket	CS-3-PBDA6	CS-3-PBDA10	CS-3-PBDA16
Clevis supporting bracket	_	CS-7C-PBDA10	CS-7C-PBDA16

Mounting type

Mounting type	Name	Remarks				
1	Double foot type	Included at shipping				
1A	Single foot type Note	Included at shipping				
3	Flange type	Included at shipping				
7	Clevis type (with pin)	Assembled and shipped				
7-7C	Clevis type with supporting bracket (with pin)	Supporting bracket included at shipping				

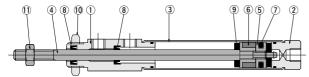
Note: When the stroke exceeds 60mm [2.362in.], select the double foot type when using the foot bracket.

Mass

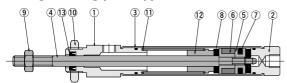
																										g [oz.]
Operating type	Mounting	Bore								9	Stroke	mm											Additio		SS	Additional
əratinç	type	mm																				ounting t		Cylinder with	Sensor switch	mass of Lateral
ð			5	10	15	20	25	30	35	40	45	50	55	60	75	100	125	150	175	200	Single foot	Flange	Clevis Note 1	magnet	(1 pc.) ^{Note 2}	piping
		6	18.8 [0.663]	19.4 [0.684]	20 [0.705]	20.8 [0.734]	21.4 [0.755]	22 [0.776]	22.4 [0.790]	22.8 [0.804]	23 [0.811]	23.6 [0.832]	24.2 [0.854]	25 [0.882]	_	_	_	_	_	_	7 [0.25]	5 [0.18]	_	0.5 [0.018]		
acting type	Basic type	10	27 [0.952]	28 [0.988]	29 [1.023]	30 [1.058]	31 [1.093]	32 [1.129]	33.3 [1.175]	34.6 [1.220]	36 [1.270]	37 [1.305]	38 [1.340]	39 [1.376]	42.4 [1.496]	48.1 [1.697]	53.8 [1.898]	59.5 [2.099]	_	_	7 [0.25]	5 [0.18]	_	1 [0.04]		2 [0.07]
Double acting		16	47.8 [1.686]	49.4 [1.743]	51 [1.799]	52.6 [1.855]	54.2 [1.912]	56 [1.975]	57.6 [2.032]	59.2 [2.088]	61 [2.152]	62.3 [2.198]	63.6 [2.243]	66 [2.328]	71.3 [2.515]	80.1 [2.825]	88.9 [3.136]	97.7 [3.446]	106.5 [3.757]	115.3 [4.067]	18 [0.63]	12 [0.42]	_	2 [0.07]		3 [0.11]
	mounting type	10	30.8 [1.086]	31.9 [1.125]	33 [1.164]	33.8 [1.192]	34.9 [1.231]	36 [1.270]	37.8 [1.333]	38.9 [1.372]	40 [1.411]	40.8 [1.439]	41.9 [1.478]	43 [1.517]	46.3 [1.633]	51.8 [1.827]	57.3 [2.021]	62.8 [2.215]	_	_	-	-	32 [1.13]	1 [0.04]		_
		16	59.4 [2.095]	61.2 [2.159]	63 [2.222]	64.4 [2.272]	66.2 [2.335]	68 [2.399]	69.4 [2.448]	71.2 [2.511]	73 [2.575]	74.4 [2.624]	76.2 [2.688]	78 [2.751]	83.4 [2.942]	92.4 [3.259]	101.4 [3.577]	110.4 [3.894]	119.4 [4.212]	128.4 [4.529]	-	_	45 [1.59]	2 [0.07]	A: 20 [0.71]	_
90		6	15.8 [0.557]	16.4 [0.578]	17 [0.600]	19.8 [0.698]	20.4 [0.720]	21 [0.741]	22.8 [0.804]	23.4 [0.825]	24 [0.847]	24.8 [0.875]	25.4 [0.896]	26 [0.917]	_	_	_	_	_	_	7 [0.25]	5 [0.18]	_	0.5 [0.018]	B: 50 [1.76]	_
ush typ	Basic type	10	26.8 [0.945]	27.9 [0.984]	29 [1.023]	31.8 [1.122]	32.9 [1.160]	34 [1.199]	39.8 [1.404]	40.9 [1.443]	42 [1.481]	42.8 [1.510]	43.9 [1.549]	45 [1.587]	_	_	_	_	_	_	18 [0.63]	12 [0.42]	_	1 [0.04]		2 [0.07]
acting push type		16	50.4 [1.778]	52.2 [1.841]	54 [1.905]	58.4 [2.060]	60.2 [2.123]	62 [2.187]	72.4 [2.554]	74.2 [2.617]	76 [2.681]	77.4 [2.730]	79.2 [2.794]	81 [2.857]	_	_	_	_	_	_	18 [0.63]	12 [0.42]	_	2 [0.07]		3 [0.11]
Single act	Clevis	10	29.8 [1.051]	30.9 [1.090]	32 [1.129]	34.8 [1.228]	35.9 [1.266]	37 [1.305]	42.8 [1.510]	43.9 [1.549]	45 [1.587]	45.8 [1.616]	46.9 [1.654]	48 [1.693]	_	_	_	_	_	_	1	_	32 [1.13]	1 [0.04]		_
S	mounting type (with pin)	16	61.4 [2.166]	63.2 [2.229]	65 [2.293]	69.4 [2.448]	71.2 [2.511]	73 [2.575]	83.4 [2.942]	83.4 [2.942]	87 [3.069]	88.4 [3.118]	90.2 [3.182]	92 [3.245]	_	_	_	_	_	_	_	_	45 [1.59]	2 [0.07]		_

Remark: Includes mounting nut and rod end nut. The clevis mounting type does not include mounting nut.

For the mass of the double foot bracket, add double the mass of the single foot bracket listed above.


Notes: 1. With supporting bracket and pin.

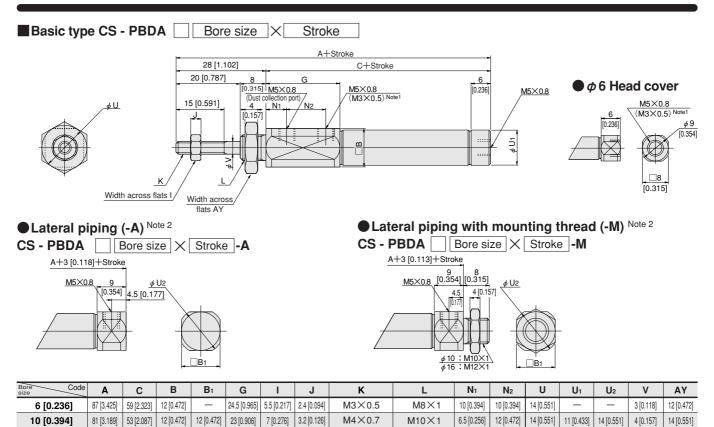
2. Same for all sensor switch models (ZC253, ZC230, ZC201, ZC205).


Calculation example: The mass for 2 units of ZC253A, with a double acting cylinder with magnet with single foot bracket, bore size of 10mm, and stroke of 45mm, is 36+7+1+40=84g [2.96oz.].

Inner Construction (cannot be disassembled)

Double acting type

Single acting push type


Major Parts and Materials

No.	Parts	Materials			
1	Rod cover	Alumaiauma allau (mialal mlatad)			
2	Head cover	Aluminum alloy (nickel plated)			
3	Cylinder tube	Ctainland atoul			
4	Piston rod	Stainless steel			
5	Piston	Aluminum alloy			
6	Magnet Note	Plastic magnet			
7	Piston seal	Complete with a MDD			
8	Rod seal	Synthetic rubber (NBR)			
9	Bumper	Urethane rubber			
10	Mounting nut	Mild stool (piekol plated)			
11)	Rod end nut	Mild steel (nickel plated)			

Note: For cylinders with magnets. Standard cylinders do not have a built-in magnet for the sensor switch.

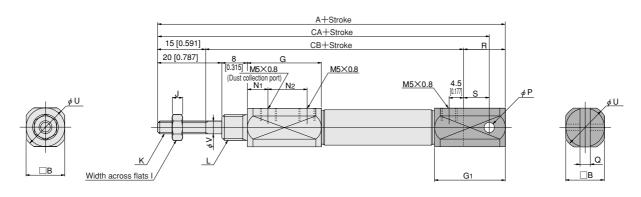
No.	Parts	Materials							
1	Rod cover	Aluminum allau (niakal platad)							
2	Head cover	Aluminum alloy (nickel plated)							
3	Cylinder tube	Stainless steel							
4	Piston rod	Stairliess steel							
(5)	Piston	Aluminum alloy							
6	Magnet Note1	Plastic magnet							
7	Piston seal	Synthetic rubber (NBR)							
8	Bumper	Urethane rubber							
9	Rod end nut	Mild atool (piekal platad)							
10	Mounting nut	Mild steel (nickel plated)							
1	Spring	Steel							
12	Collar	Aluminum alloy							
13	Rod seal	Synthetic rubber (NBR)							

Note: For cylinders with magnets. Standard cylinders do not have a built-in magnet for the sensor switch.

Notes: 1. For bore size ϕ 6 only.

16 [0.630]

2. Not available for bore size ϕ 6.


81.5 [3.209] 53.5 [2.106] 17 [0.669]

17 [0.669] 21.5 [0.846]

8 [0.315]

4 [0.157]

 $M5 \times 0.8$

M12×1

5 [0.197]

12 [0.472]

19 [0.748]

17 [0.669]

19 [0.748]

5 [0.197]

17 [0.669]

Bore Code	Α	В	G	G ₁	I	J	K	L	N1	N2
10 [0.394]	97 [3.819]	12 [0.472]	23 [0.905]	22 [0.866]	7 [0.276]	3.2 [0.126]	M4×0.7	M10×1	6.5 [0.256]	12 [0.472]
16 [0.630]	102.5 [4.035]	17 [0.669]	21.5 [0.846]	27 [1.063]	8 [0.315]	4 [0.157]	M5×0.8	M12×1	5 [0.197]	12 [0.472]

Bore Code	r	Q	R	S	U	٧	CA	СВ
10 [0.394]	$3.2^{+0.09}_{+0.06}$ [0.1260 $^{+0.0035}_{+0.0024}$]	$3.2^{+0.2}_{+0.1}$ [0.126 ^{+0.008} _{+0.004}]	13 [0.512]	8 [0.315]	14 [0.551]	4 [0.157]	92 [3.622]	69 [2.717]
16 [0.630]		$6.5^{+0.2}_{+0.1}[0.256^{+0.008}_{+0.004}]$	18 [0.709]	10 [0.394]	19 [0.748]	5 [0.197]	94.5 [3.720]	69.5 [2.736]

Dimensions of Single Acting Push Type Cylinder mm [in.]

G

13 [0.512]

11.5 [0.453] 8 [0.315]

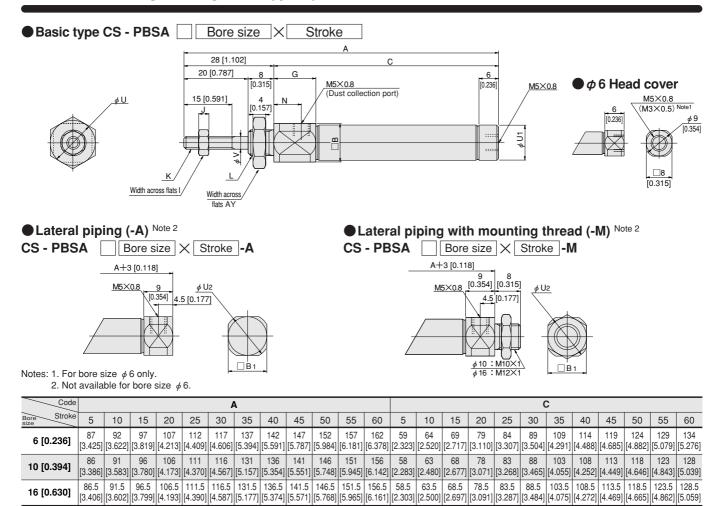
14.5 [0.571] 5.5 [0.217] 2.4 [0.094]

3.2 [0.126]

4 [0.157]

7 [0.276]

6 [0.236]


10 [0.394]

16 [0.630]

12 [0.472]

12 [0.472] 12 [0.472]

17 [0.669] 17 [0.669]

Κ

M3×0.5

M4×0.7

M5×0.8

L

M8×1

M10×1

M12×1

8 [0.315]

7 [0.276]

U

14 [0.551]

19 [0.748]

8.5 [0.335] 14 [0.551]

U1

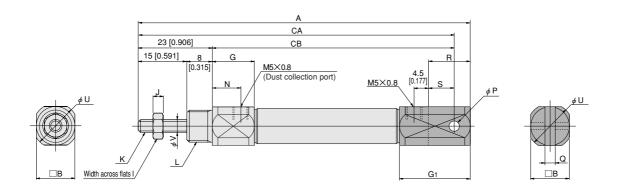
11 [0.433]

17 [0.669]

14 [0.551]

19 [0.748]

3 [0.118]


4 [0.157]

5 [0.197]

12 [0.472]

14 [0.551]

● Clevis mounting type CS - PBSA Bore size X Stroke -7

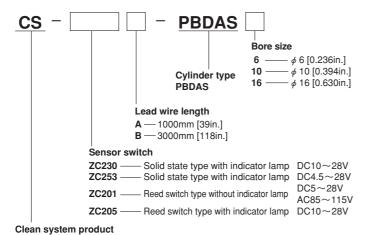
Code													
Bore Stroke	5	10	15	20	25	30	35	40	45	50	55	60	
10 [0.394]	97 [3.819]	102 [4.016]	107 [4.213]	117 [4.606]	122 [4.803]	127 [5.000]	142 [5.591]	147 [5.787]	152 [5.984]	157 [6.181]	162 [6.378]	167 [6.575]	
16 [0.630]	102.5 [4.035]	107.5 [4.232]	112.5 [4.429]	122.5 [4.823]	127.5 [5.020]	132.5 [5.217]	147.5 [5.807]	152.5 [6.004]	157.5 [6.201]	162.5 [6.398]	167.5 [6.594]	172.5 [6.791]	

Code		CA												
Bore Stroke	5	10	15	20	25	30	35	40	45	50	55	60		
10 [0.394]	92 [3.622]	97 [3.819]	102 [4.016]	112 [4.409]	117 [4.606]	122 [4.803]	137 [5.394]	142 [5.591]	147 [5.787]	152 [5.984]	157 [6.181]	162 [6.378]		
16 [0.630]	94.5 [3.720]	99.5 [3.917]	104.5 [4.114]	114.5 [4.508]	119.5 [4.705]	124.5 [4.902]	139.5 [5.492]	144.5 [5.689]	149.5 [5.886]	154.5 [6.083]	159.5 [6.280]	164.5 [6.476]		

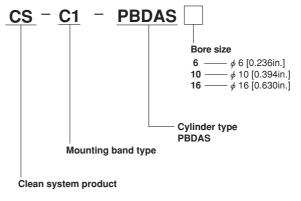
Code		СВ												
Bore Stroke	5	10	10 15 20 25 30 35 40						45	50	55	60		
10 [0.394]	69 [2.717]	74 [2.913]	79 [3.110]	89 [3.504]	94 [3.701]	99 [3.898]	114 [4.488]	119 [4.685]	124 [4.882]	129 [5.079]	134 [5.276]	139 [5.472]		
16 [0.630]	71.5 [2.815]	76.5 [3.012]	81.5 [3.209]	91.5 [3.602]	96.5 [3.799]	101.5 [3.996]	116.5 [4.587]	121.5 [4.783]	126.5 [4.980]	131.5 [5.177]	136.5 [5.374]	141.5 [5.571]		

E	Sore Code	В	G	G ₁	I	J	K	L	N	Р	Q	R	S	U	٧
	10 [0.394]	12 [0.472]	13 [0.512]	22 [0.866]	$\frac{2}{3}$		$3.2^{+0.2}_{+0.1} [0.126^{+0.008}_{+0.004}]$	13 [0.512]	8 [0.315]	14 [0.551]	4 [0.157]				
Ī	16 [0.630]	17 [0.669]	11.5 [0.453]	27 [1.063]	8 [0.315]	4 [0.157]	M5×0.8	M12×1	7 [0.276]	5 +0.09 [0.1969+0.0035]	$6.5^{+0.2}_{+0.1} [0.256^{+0.008}_{+0.004}]$	18 [0.709]	10 [0.394]	19 [0.748]	5 [0.197]

PEN CYLINDERS


Sensor Switches

Symbol


Order Codes for Sensor Switches

Sensor switches (with mounting band)

lacktriangle For details of sensor switches, see p.111 \sim 121.

Mounting band only

Minimum Cylinder Strokes When Mounting Sensor Switches

Depending on the sensor switch type and quantity, as well as on the mounting position, the minimum cylinder strokes that allow sensor switch mounting are shown below.

Two pieces mounting

When mounted in-line

When mounted in staggered positions

10 [0.394]

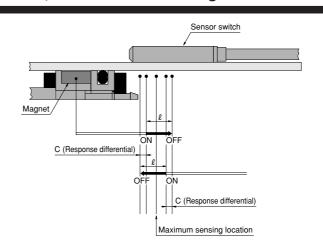
One piece mounting

mm [in.] 2 pcs. mounting Sensor switch model 1 pc. mounting In-line In staggered positions ZC230 □, ZC253 □ 5 [0.197] 30 [1.181] 5 [0.197]

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ

ZC201 □, ZC205 □

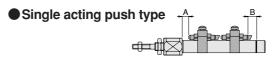

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

					mm [in.]		
Bore	size	ZC230□,	ZC253 🗆	ZC201 □, ZC205 □			
Dore	D010 3120	Operating range	Response differential	Operating range	Response differential		
6 [0.	.236]	1.5~2.5 [0.059~0.098]	0.3 [0.012] or less	4~6 [0.157~0.236]	1.4 [0.055] or less		
10 [0	.394]	2.0~3.0 [0.079~0.118]	0.3 [0.012] or less	4~6 [0.157~0.236]	1.5 [0.059] or less		
16 [0	.630]	2.5~3.5 [0.098~0.138]	0.3 [0.012] or less	5~7 [0.197~0.276]	1.8 [0.071] or less		

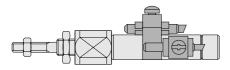
Note: The operating range and response differential are to be used as reference values.



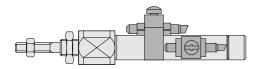
Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the location shown in the diagram below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Sensor switch model	Bore size	6 [0.236]	10 [0.394]	16 [0.630]
ZC230□	Α	3.5 [0.138]	2 [0.079]	3 [0.118]
ZC253□	В	0 [0]	-3 [-0.118]	-2 [-0.079]
70001	Α	5 [0.197]	3.5 [0.138]	4.5 [0.177]
ZC201 □	В	1.5 [0.059]	-1.5 [-0.059]	-0.5 [-0.020]
ZC205□	Α	1.5 [0.059]	0 [0]	1 [0.039]
ZC205	В	1 [0.039]	-2 [-0.079]	-1 [-0.039]



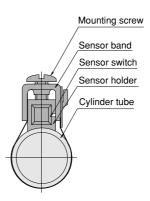
mm [in.]


Sensor switch model			6 [0.236]	10 [0.394]	16 [0.630]
		0~15	3.5 [0.138]	7 [0.276]	8 [0.315]
ZC230 □	Α	16~30	8.5 [0.335]	12 [0.472]	13 [0.512]
ZC253		31~60	23.5 [0.925]	22 [0.866]	23 [0.906]
	В	ı	0 [0]	-3 [-0.118]	-2 [-0.079]
	Α	0~15	5 [0.197]	8.5 [0.335]	9.5 [0.374]
ZC201 □		16~30	10 [0.394]	13.5 [0.531]	14.5 [0.571]
20201		31~60	25 [0.984]	23.5 [0.925]	24.5 [0.965]
	В	-	1.5 [0.059]	-1.5 [-0.059]	-0.5 [-0.020]
		0~15	1.5 [0.059]	5 [0.197]	6 [0.236]
ZC205□	Α	16~30	6.5 [0.256]	10 [0.394]	11 [0.433]
20205		31~60	21.5 [0.846]	20 [0.787]	21 [0.827]
	В	_	1 [0.039]	-2 [-0.079]	-1 [-0.039]

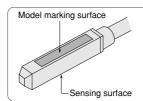
Mounting Sensor Switch by Strokes

●5mm stroke

● 10mm stroke

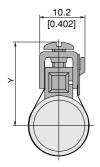


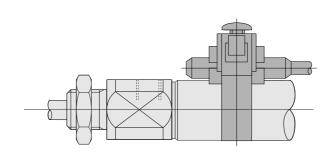
Position of sensor holder, and how to adjust it


- ●The sensor holder cannot be installed at the center of the sensor switch in the axial direction when mounting 2 sensor switches on a 5mm [0.197in.] stroke cylinder.
- When mounting 2 sensor switches on a 5mm [0.197in.] stroke cylinder, loosen the mounting screw and move the sensor switch until the sensor holder is in the position shown in the diagram, and install it in the prescribed position.
- For 10mm [0.394in.] strokes or longer, install the sensor holder so that it is approximately at the center of the sensor switch in the axial direction, as shown in the diagram.

Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved either along the axial or circumference direction of the cylinder
- When making fine adjustments of the sensor switch along the axial direction, a very slight loosening of the mounting screw (about onehalf turn) is enough to allow the sensor switch to move.
- Tighten the mounting screw with a tightening torque of 0.3N·m [2.7in·lbf] or less.

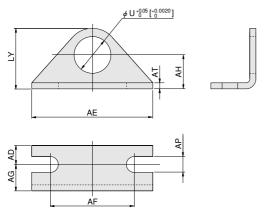



Caution when installing sensor switches on the cylinder

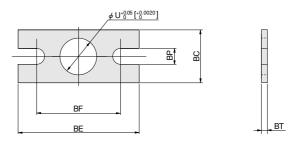
In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

Dimensions of Sensor Switch Mounting mm [in.]

Bore Code	Υ
6 [0.236]	(16 [0.630])
10 [0.394]	(18 [0.709])
16 [0.630]	(21 [0.827])

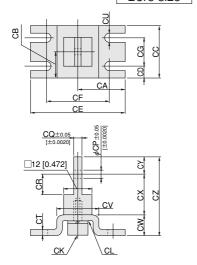

PEN CYLINDERS

Mounting Brackets, Rod End Accessories


Dimensions of Mounting Bracket mm [in.]

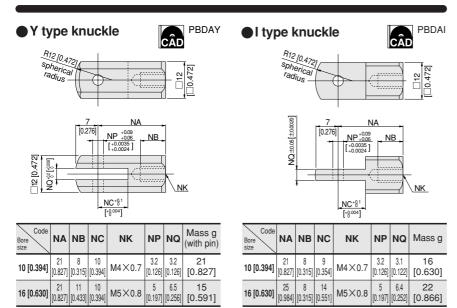
● Single foot bracket (For the order code, see p. 62.)

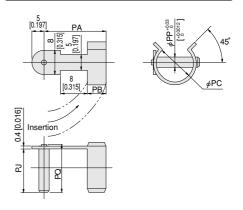
Code Bore size	U	AD	AE	AF	AG	АН	AP	AT	LY
6 [0.236]	8	5	32	22.2	7	9	4.2	1.6	16
	[0.315]	[0.197]	[1.260]	[0.874]	[0.276]	[0.354]	[0.165]	[0.063]	[0.630]
10 [0.394]	10	6	42	29.2	9	14	5.2	2.3	24
	[0.394]	[0.236]	[1.654]	[1.150]	[0.354]	[0.551]	[0.205]	[0.091]	[0.945]
16 [0.630]	12	6	42	29.2	9	14	5.2	2.3	24
	[0.472]	[0.236]	[1.654]	[1.150]	[0.354]	[0.551]	[0.205]	[0.091]	[0.945]


■ Flange bracket (For the order code, see p. 62.)

Code Bore size	U	вс	BE	BF	ВР	ВТ
6 [0.236]	8	14	32	22.2	4.2	1.6
	[0.315]	[0.551]	[1.260]	[0.874]	[0.165]	[0.063]
10 [0.394]	10	20	42	29.2	5.2	2.3
	[0.394]	[0.787]	[1.654]	[1.150]	[0.205]	[0.091]
16 [0.630]	12	20	42	29.2	5.2	2.3
	[0.472]	[0.787]	[1.654]	[1.150]	[0.205]	[0.091]

Clevis mount supporting bracket


Order code: 7C-PBDA Bore size


Code Bore size	CA	СВ	сс	CD	CE	CF	CG	CK (Hexagon socket head bolt)
10 [0.394]	20 [0.787]	11 [0.433]	22 [0.866]	5 [0.197]	40 [1.575]	30.2 [1.189]	12 [0.472]	M4×0.7×10 [0.394]
16 [0.630]	24 [0.945]	14 [0.551]	28 [1.102]	6 [0.236]	48 [1.890]	35.2 [1.386]	16 [0.630]	M5×0.8×10 [0.394]

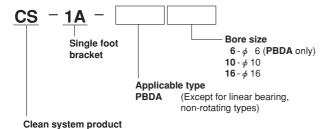
Code Bore size	CL (Spring washer)	СР	CQ	CR	СТ	CU	cv	cw	СХ	CY	cz
10 [0.394]	Nominal 4 [0.157]	3.3 [0.130]	3.1 [0.122]	9 [0.354]	2 [0.079]	4.2 [0.165]	18 [0.709]	8 [0.315]	21 [0.827]	7 [0.276]	36 [1.417]
16 [0.630]	Nominal 5 [0.197]	5.1 [0.201]	6.4 [0.252]	14 [0.551]	2.3 [0.091]	5.2 [0.205]	20 [0.787]	10 [0.394]	25 [0.984]	7 [0.276]	42 [1.654]

Dimensions of Pin Bracket mm [in.]

16 [0.630]

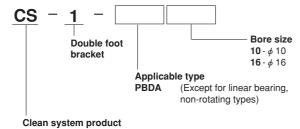
Bore size	PA	РВ	PC	PJ	PP	PQ	Mass g
10 [0.394]	17 [0.669]	5 [0.197]	14 [0.551]	13.5 [0.531]	3.2 [0.126]	(15) ([0.591])	2 [0.079]
16 [0.630]	17 [0.669]	5 [0.197]	14 [0.551]	13.5 [0.531]	5	(15) ([0.591])	3
16 [0.630]**	19 [0.748]	6 [0.236]	19 [0.748]		[0.197]	(20.5) ([0.807])	[0.118]

Note: * shows the case for clevis mounting bracket.

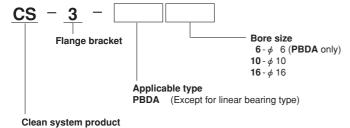

Order Codes for Mounting Brackets and Rod End Accessories

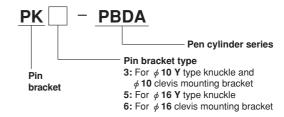
[0.197] [0.256] [0.591]

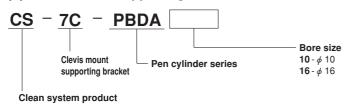
Note: Rod end accessories for clean systems are not available.


M5×0.8

(5) Y type knuckle Note


(2) Double foot bracket (2 foot brackets in 1 set)


(6) I type knuckle Note


(3) Flange bracket

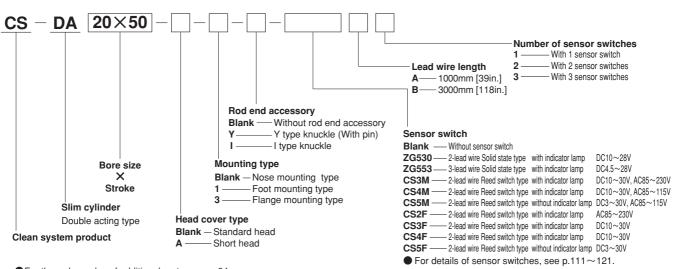
(7) Pin bracket Note

(4) Clevis mount supporting bracket

Symbol

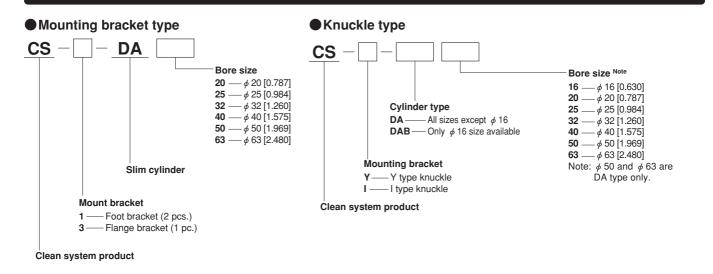
Specifications

Item	Bore size mm [in.]	¢ 20 ∼ ¢ 40 [0.787 ∼ 1.575]	∮ 50, ∮ 63 [1.969, 2.480]		
Operating ty	ре	Double acting type			
Media		Air			
Operating pressure	range MPa [psi.]	0.1~0.9 [15~131]	0.1~0.7 [15~102]		
Proof pressure	MPa [psi.]	1.32 [191]	1.03 [149]		
Operating temperatu	re range °C [°F]	0~60 [32~140]			
Operating speed ran	ge mm/s [in./sec.]	50~300 [2.0~11.8]			
Cushion		Fixed type (Rubber bumper)	Variable type (15mm [0.591in.] stroke)		
Lubrication		Not re	quired		
Port size	Supply port	Rc1/8	Rc1/4		
F UIT SIZE	Dust collection port	M5×0.8			

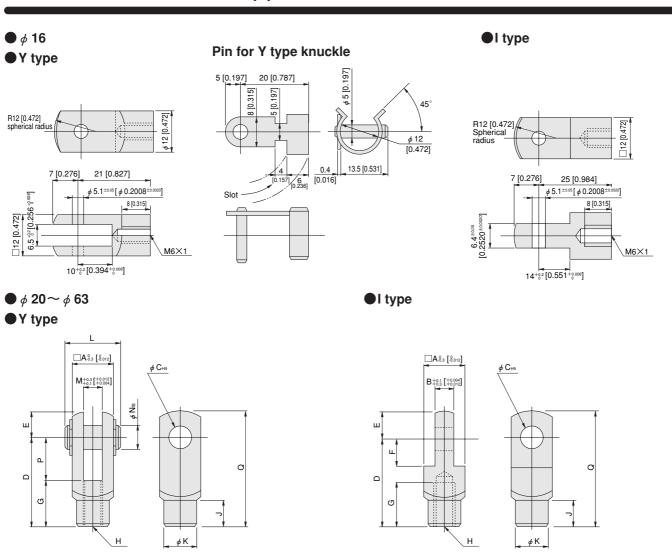

Bore Size and Stroke

				mm [in.]
Bore size	Mounting type	Standard strokes	Maximum stroke	Maximum available stroke
20 [0.787]	Foot mounting Nose mounting Flange mounting	25 50 75 100 125 150	200	
25 [0.984]	Foot mounting Nose mounting Flange mounting	25 50 75 100 125 150 200	250	1050
32 [1.260]	Foot mounting Nose mounting Flange mounting	25 50 75 100 125 150 200	300	[41.3]
40 [1.575]	Foot mounting Nose mounting Flange mounting	25 50 75 100 125 150 200 250 300	400	
50	Foot mounting	25 50 75 100 150 200 250 300 350 400	500	
[1.969]	Nose mounting Flange mounting	25 50 75 100 150 200	300	900
63	Foot mounting	25 50 75 100 150 200 250 300 350 400 500	600	[35.4]
[2.480]	Nose mounting Flange mounting	25 50 75 100 150 200	300	

Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039}_{0}$]

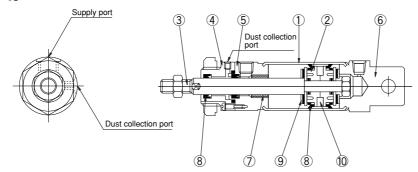

- 2. For non-standard strokes, consult us.
- 3. The minimum operating pressure when the stroke is over the $\,$ maximum stroke at bore sizes of ϕ 20 \sim ϕ 40 is 0.2MPa [29psi.].

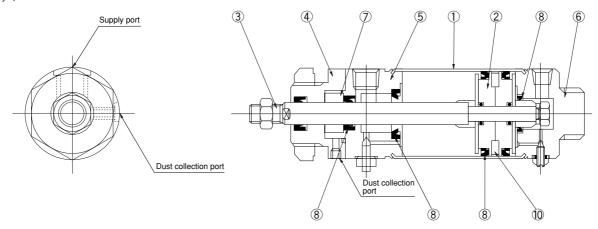
Order Codes



• For the order codes of additional parts, see p. 64.

Order Codes of Additional Parts (To be ordered separately) mm [in.]


Dimensions of Additional Parts mm [in.]


Bore Code	Α	В	С	D	E	F	G	Н	J	K	L	M	N	Р	Q
20	16 [0.630]	8 [0.315]	8 [0.315]	30 [1.181]	10 [0.394]	11 [0.433]	15 [0.591]	M8×1	10 [0.394]	14 [0.551]	21 [0.827]	8 [0.315]	8 [0.315]	15 [0.591]	40 [1.575]
25, 32	19 [0.748]	10 [0.394]	10 [0.394]	40 [1.575]	12 [0.472]	13 [0.512]	20 [0.787]	M10×1.25	12 [0.472]	16 [0.630]	25 [0.984]	10 [0.394]	10 [0.394]	20 [0.787]	52 [2.047]
40, 50, 63	24 [0.945]	14 [0.551]	10 [0.394]	45 [1.772]	12 [0.472]	13 [0.512]	25 [0.984]	M14×1.5	15 [0.591]	22 [0.866]	30 [1.181]	14 [0.551]	10 [0.394]	20 [0.787]	57 [2.244]

Inner Construction and Major Parts

$\bullet \phi 20 \sim \phi 40$

Φ50, *Φ*63

Major Parts and Materials

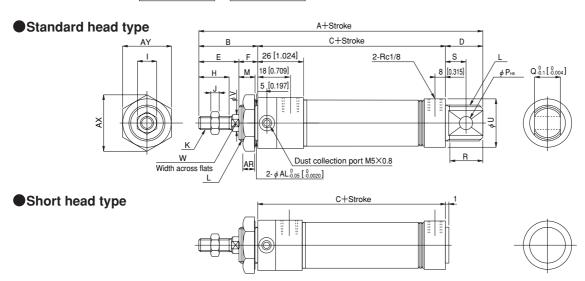
No.	Parts	Materials
1	Cylinder tube	Stainless steel
2	Piston	Plastic
3	Piston rod	Stainless steel
4	Dust prevention cover	
(5)	Rod cover	Aluminum alloy (anodized)
6	Head cover	
7	Rod bushing	Plastic
8	Seal	Conthatia wikhaw (NDD)
9	Bumper	Synthetic rubber (NBR)
10	Magnet	Plastic magnet
	Mounting bracket	Mild steel (nickel plated)

Seals

$\Phi \phi 20 \sim \phi 40$

Parts	Dust leak prevention seal and rod seal	Piston seal
Bore mm [in.] Quantity	1 each	2
20 [0.787]	NY-12×8×3.5	PPY-20
25 [0.984]	NY-14×10×3.5	PPY-25
32 [1.260]	NY-17×12×4	PPY-30
40 [1.575]	NY-22×16×5	PPY-40

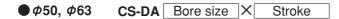
Φ50, Φ63

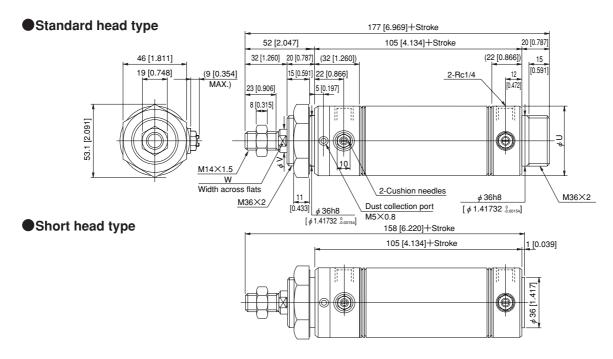

Parts	Dust leak prevention seal and rod seal	Piston seal	Cushion seal 2 PCS-20			
Bore mm [in.] Quantity	1 each	2	2			
50 [1.969]	NY-22×16×5	PGY-50	PCS-20			
63 [2.480]	NY-22×16×5	PGY-63	PCS-20			

Mass

$\bullet \phi 20 \sim \phi$	g [oz]				
Bore size		Zero stro	ke mass		Additional mass for each 1mm
mm [in.]	Nose type	Foot type	Flange type	Clevis type	[0.0394 in.] stroke
20 [0.787]	172 [6.07]	312 [11.01]	252 [8.89]	232 [8.18]	0.8 [0.028]
25 [0.984]	235 [8.29]	415 [14.64]	335 [11.82]	295 [10.41]	1.1 [0.039]
32 [1.260]	375 [13.23]	585 [20.63]	505 [17.81]	515 [18.17]	1.5 [0.053]
40 [1.575]	540 [19.05]	870 [30.69]	710 [25.04]	680 [23.99]	2.4 [0.085]

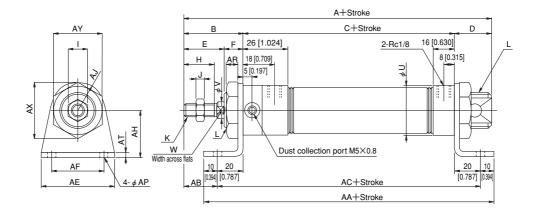
● <i>Ф</i> 50,	Φ63					g [oz]	
Bore size	Z	ero stroke mas	ss	Additional mass for each 1mm	Mass of mou	nting bracket	
mm [in.]	Standard head type	Short head type	Clevis head type		Foot bracket	Flange bracket	
50 [1.969]	933 [32.91]	883 [31.15]	880 [31.04]	2.8 [0.099]	550 [19.40]	280 [9.88]	
63 [2.480]	1265 [44.62]	1225 [43.21]	1195 [42.15]	3.5 [0.123]	730 [25.75]	370 [13.05]	





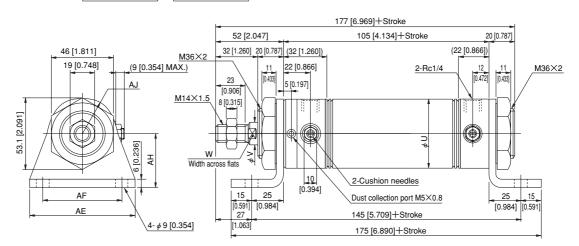
Bore Code	Α	В	С	D	Е	F	Н	ı	J	K	L	М	Р	Q	R	S	U	V	W
20 [0.787]	142 [5.591]	35 [1.378]	86 [3.386]	21 [0.827]	23 [0.906]	12 [0.472]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	M20×1.5	10 [0.394]	8 [0.315]	12 [0.472]	19 [0.748]	12 [0.472]	27 [1.063]	8 [0.315]	6 [0.236]
25 [0.984]	147 [5.787]	40 [1.575]	86 [3.386]	21 [0.827]	26 [1.024]	14 [0.551]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	M22×1.5	12 [0.472]	8 [0.315]	12 [0.472]	19 [0.748]	12 [0.472]	29 [1.142]	10 [0.394]	8 [0.315]
32 [1.260]	158 [6.220]	45 [1.772]	86 [3.386]	27 [1.063]	31 [1.220]	14 [0.551]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	M27×2	12 [0.472]	10 [0.394]	20 [0.787]	25 [0.984]	15 [0.591]	35 [1.378]	12 [0.472]	10 [0.394]
40 [1.575]	158 [6.220]	45 [1.772]	86 [3.386]	27 [1.063]	31 [1.220]	14 [0.551]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	M33×2	12 [0.472]	10 [0.394]	20 [0.787]	25 [0.984]	15 [0.591]	41.6 [1.638]	16 [0.630]	14 [0.551]

Bore Code	AL	AR	AX	AY
20 [0.787]	20 [0.787]	7.5 [0.295]	31.2 [1.228]	27 [1.063]
25 [0.984]	22 [0.866]	9.5 [0.374]	34.6 [1.362]	30 [1.181]
32 [1.260]	27 [1.063]	9.5 [0.374]	41.6 [1.638]	36 [1.417]
40 [1.575]	33 [1.299]	9.5 [0.374]	47.3 [1.862]	41 [1.614]

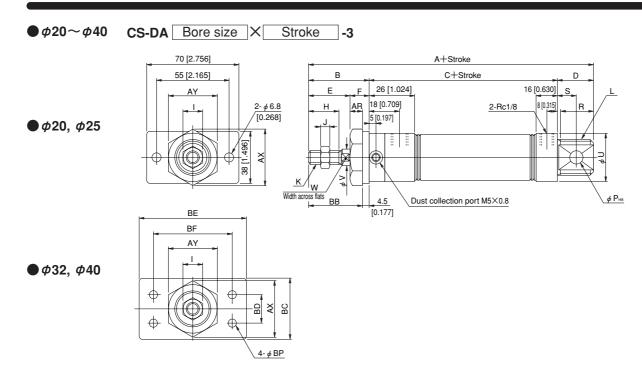

Remarks: Stroke tolerance ${}^{+1}_{0}[{}^{+0.039}_{0}]$

Bore Code	U	V	W	Cushion stroke	Stroke tolerance
50 [1.969]	52 [2.047]	16 [0.630]	14 [0.551]	15 [0.591]	+1[+0.039]
63 [2.480]	65.4 [2.575]	16 [0.630]	14 [0.551]	15 [0.591]	+1[+0.039]

$\bullet \phi 20 \sim \phi 40$ CS-DA Bore size X Stroke -1

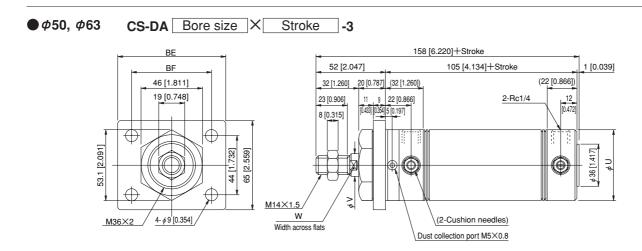


Bore Code	А	В	С	D	Е	F	Н	I	J	K	L	U	V	W
20 [0.787]	142 [5.591]	35 [1.378]	86 [3.386]	21 [0.827]	23 [0.906]	12 [0.472]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	M20×1.5	27 [1.063]	8 [0.315]	6 [0.236]
25 [0.984]	147 [5.787]	40 [1.575]	86 [3.386]	21 [0.827]	26 [1.024]	14 [0.551]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	M22×1.5	29 [1.142]	10 [0.394]	8 [0.315]
32 [1.260]	158 [6.220]	45 [1.772]	86 [3.386]	27 [1.063]	31 [1.220]	14 [0.551]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	M27×2	35 [1.378]	12 [0.472]	10 [0.394]
40 [1.575]	158 [6.220]	45 [1.772]	86 [3.386]	27 [1.063]	31 [1.220]	14 [0.551]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	M33×2	41.6 [1.638]	16 [0.630]	14 [0.551]


Bore Code	AA	AB	AC	AE	AF	AH	AJ	AP	AR	AT	AX	AY
20 [0.787]	146 [5.748]	15 [0.591]	126 [4.961]	55 [2.165]	40 [1.575]	25 [0.984]	15.5 [0.610]	6.8 [0.268]	7.5 [0.295]	3.2 [0.126]	31.2 [1.228]	27 [1.063]
25 [0.984]	146 [5.748]	20 [0.787]	126 [4.961]	55 [2.165]	40 [1.575]	30 [1.181]	17 [0.669]	6.8 [0.268]	9.5 [0.374]	3.2 [0.126]	34.6 [1.362]	30 [1.181]
32 [1.260]	146 [5.748]	25 [0.984]	126 [4.961]	55 [2.165]	40 [1.575]	35 [1.378]	20 [0.787]	6.8 [0.268]	9.5 [0.374]	3.2 [0.126]	41.6 [1.638]	36 [1.417]
40 [1.575]	146 [5.748]	25 [0.984]	126 [4.961]	75 [2.953]	55 [2.165]	40 [1.575]	23.5 [0.925]	9 [0.354]	9.5 [0.374]	4 [0.157]	47.3 [1.862]	41 [1.614]

Remarks: Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

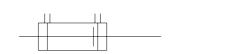
lacktriangle ϕ 50, ϕ 63 CS-DA Bore size \times Stroke --


Bore Code	U	V	W	AE	AF	AJ	AH	Cushion stroke	Stroke tolerance
50 [1.969]	52 [2.047]	16 [0.630]	14 [0.551]	80 [3.150]	60 [2.362]	26 [1.024]	40 [1.575]	15 [0.591]	+1[+0.039]
63 [2.480]	65.4 [2.575]	16 [0.630]	14 [0.551]	95 [3.740]	74 [2.913]	32 [1.260]	45 [1.772]	15 [0.591]	+1[+0.039]

Bore Code	Α	В	С	D	Е	F	Н	- 1	J	K	L	Р	R	S	U	V	W
20 [0.787]	142 [5.591]	35 [1.378]	86 [3.386]	21 [0.827]	23 [0.906]	12 [0.472]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	M20×1.5	8 [0.315]	19 [0.748]	12 [0.472]	27 [1.063]	8 [0.315]	6 [0.236]
25 [0.984]	147 [5.787]	40 [1.575]	86 [3.386]	21 [0.827]	26 [1.024]	14 [0.551]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	M22×1.5	8 [0.315]	19 [0.748]	12 [0.472]	29 [1.142]	10 [0.394]	8 [0.315]
32 [1.260]	158 [6.220]	45 [1.772]	86 [3.386]	27 [1.063]	31 [1.220]	14 [0.551]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	M27×2	10 [0.394]	25 [0.984]	15 [0.591]	35 [1.378]	12 [0.472]	10 [0.394]
40 [1.575]	158 [6.220]	45 [1.772]	86 [3.386]	27 [1.063]	31 [1.220]	14 [0.551]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	M33×2	10 [0.394]	25 [0.984]	15 [0.591]	41.5 [1.634]	16 [0.630]	14 [0.551]

Bore Code	AR	AX	AY	BB	BC	BD	BE	BF	BP
20 [0.787]	7.5 [0.295]	31.2 [1.228]	27 [1.063]	30.5 [1.201]	_	_	_	ı	_
25 [0.984]	9.5 [0.374]	34.6 [1.362]	30 [1.181]	35.5 [1.398]	_	_	_	_	_
32 [1.260]	9.5 [0.374]	41.6 [1.638]	36 [1.417]	40.5 [1.594]	45 [1.772]	20 [0.787]	80 [3.150]	60 [2.362]	6.8 [0.268]
40 [1.575]	9.5 [0.374]	47.3 [1.862]	41 [1.614]	40.5 [1.594]	50 [1.969]	30 [1.181]	100 [3.937]	80 [3.150]	9 [0.354]

Remarks: Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039}_{0}$]



Bore Code	UV		W BE		BF	Cushion stroke	Stroke tolerance
50 [1.969]	52 [2.047]	16 [0.630]	14 [0.551]	80 [3.150]	60 [2.362]	15 [0.591]	+1[+0.039]
63 [2.480]	65.4 [2.575]	16 [0.630]	14 [0.551]	100 [3.937]	80 [3.150]	15 [0.591]	+1[+0.039]

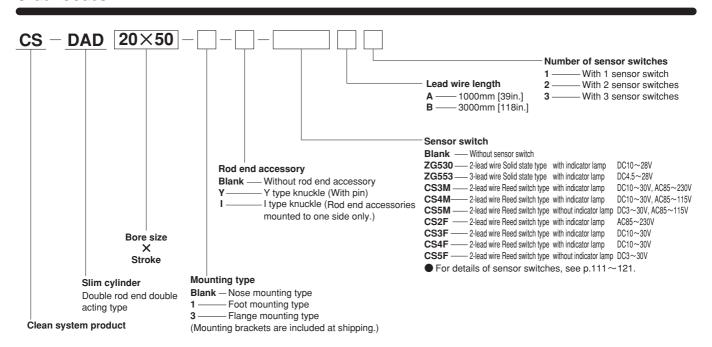
TEM SLIM DOUBLE ROD END CYLINDERS

Double Rod End Double Acting Type

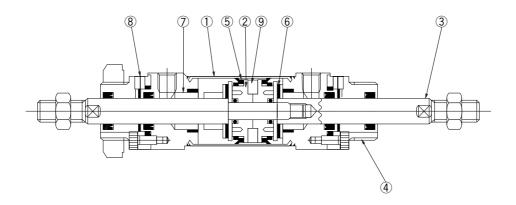
Symbol

Specifications

Item Bore size mm [in.]	20~40 [0.787~1.575]
Operating type	Double acting type
Media	Air
Mounting type	Basic type, Foot type, Flange type
Operating pressure range MPa [psi.]	0.15~0.9 [22~131]
Proof pressure MPa [psi.]	1.32 [191]
Operating temperature range °C [°F]	0~60 [32~140]
Operating speed range mm/s [in./sec.]	50~300 [2.0~11.8]
Cushion	Fixed type (Rubber bumper)
Lubrication	Not required
Port size Rc	1/8


Bore Size and Stroke

			mm [in.]
Bore size	Standard strokes	Maximum stroke	Maximum available stroke
20 [0.787]	25 50 75 100 125 150	200	400
25 [0.984]	25 50 75 100 125 150 200	250	400
32 [1.260]	25 50 75 100 125 150 200	300	F00
40 [1.575]	25 50 75 100 125 150 200 250 300	400	500


Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039}_{0}$]

- 2. For non-standard strokes, consult us.
- 3. The minimum operating pressure when the stroke is over the maximum stroke at bore size of ϕ 20[0.787] $\sim \phi$ 40[1.575] is 0.2MPa [29psi.].

Order Codes

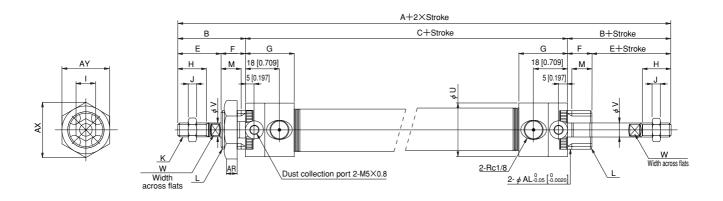
●For the order codes of additional parts, see p. 64.

Major Parts and Materials

Parts	Bore size mm	20~40
1	Cylinder tube	Stainless steel
2	Piston	Plastic
3	Piston rod	Steel
4	Rod cover	Aluminum alloy (anodized)
(5)	Seal	Synthetic rubber (NBR)
6	Bumper	Synthetic rubber (NBR)
7	Rod bushing	Plastic
8	Dust prevention cover	Aluminum (anodized)
9	Magnet	Plastic magnet
	Mounting bracket	Mild steel (nickel plated)

Seals

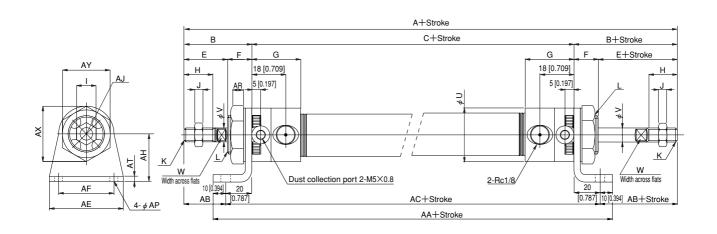
Parts	Rod seal	Piston seal	Dust leak prevention seal	
Bore mm Quantity	2	2	2	
20	NY-12×8×3.5	PPY-20	NY-12×8×3.5	
25	NY-14×10×3.5	PPY-25	NY-14×10×3.5	
32	NY-17×12×4	PPY-32	NY-17×12×4	
40	NY-22×16×5	PPY-40	NY-22×16×5	


Mass

						g [oz.]	
Bore size mm [in.]		Zero stroke mass		Additional mass for each	Mass of knuckle		
	Basic type	Foot mounting type	Flange mounting type	1mm [0.0394in.] stroke	Y type knuckle	I type knuckle	
20 [0.787]	190 [6.70]	330 [11.64]	270 [9.52]	1.2 [0.042]	41 [1.45]	36 [1.27]	
25 [0.984]	290 [10.23]	450 [15.87]	370 [13.05]	1.6 [0.056]	75 [2.65]	70 [2.47]	
32 [1.260]	430 [15.17]	620 [21.87]	530 [18.69]	2.5 [0.088]	75 [2.65]	70 [2.47]	
40 [1.575]	630 [22.22]	920 [32.45]	760 [26.81]	3.9 [0.138]	120 [4.23]	132 [4.66]	

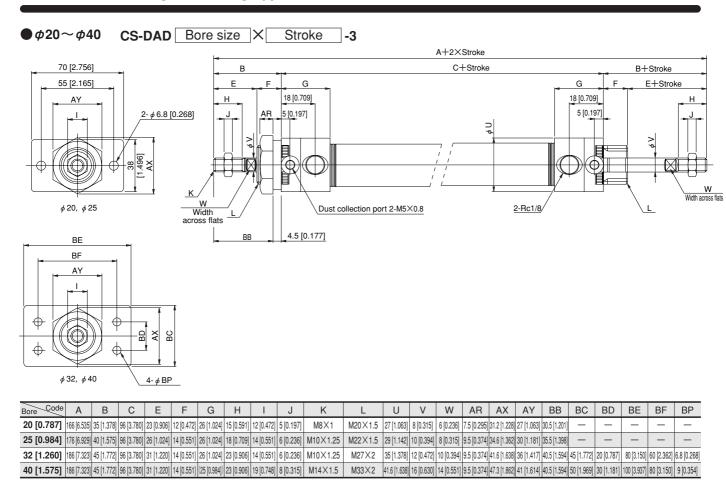
Calculation example: For basic type of 40mm bore size and 100mm stroke $630+(3.9\times100)=1020g$ [35.98 oz.]

Basic type


● φ20 ~ φ40 CS-DAD Bore size X Stroke

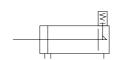
Bore Code	Α	В	С	Е	F	G	Н	I	J	K	L	М	U	V	W	AR	AX	AY	AL
20 [0.787]	166 [6.535]	35 [1.378]	96 [3.780]	23 [0.906]	12 [0.472]	26 [1.024]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	M20×1.5	10 [0.394]	27 [1.063]	8 [0.315]	6 [0.236]	7.5 [0.295]	31.2 [1.228]	27 [1.063]	20 [0.787]
25 [0.984]	176 [6.929]	40 [1.575]	96 [3.780]	26 [1.024]	14 [0.551]	26 [1.024]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	M22×1.5	12 [0.472]	29 [1.142]	10 [0.394]	8 [0.315]	9.5 [0.374]	34.6 [1.362]	30 [1.181]	22 [0.866]
32 [1.260]	186 [7.323]	45 [1.772]	96 [3.780]	31 [1.220]	14 [0.551]	26 [1.024]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	M27×2	12 [0.472]	35 [1.378]	12 [0.472]	10 [0.394]	9.5 [0.374]	41.6 [1.638]	36 [1.417]	27 [1.063]
40 [1.575]	186 [7.323]	45 [1.772]	96 [3.780]	31 [1.220]	14 [0.551]	(25 [0.984])	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	M33×2	12 [0.472]	41.6 [1.638]	16 [0.630]	14 [0.551]	9.5 [0.374]	47.3 [1.862]	41 [1.614]	33 [1.299]

Foot mounting type


 ϕ 20 \sim ϕ 40 CS-DAD Bore size X Stroke -1

Bore Code	А	В	С	Е	F	G	Н	1	J	K	L	U	V	W
20 [0.787]	166 [6.535]	35 [1.378]	96 [3.780]	23 [0.906]	12 [0.472]	26 [1.024]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	M20×1.5	27 [1.063]	8 [0.315]	6 [0.236]
25 [0.984]	176 [6.929]	40 [1.575]	96 [3.780]	26 [1.024]	14 [0.551]	26 [1.024]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	M22×1.5	29 [1.142]	10 [0.394]	8 [0.315]
32 [1.260]	186 [7.323]	45 [1.772]	96 [3.780]	31 [1.220]	14 [0.551]	26 [1.024]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	M27×2	35 [1.378]	12 [0.472]	10 [0.394]
40 [1.575]	186 [7.323]	45 [1.772]	96 [3.780]	31 [1.220]	14 [0.551]	(25 [0.984])	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	M33×2	41.6 [1.638]	16 [0.630]	14 [0.551]

Bore Code	AA	AB	AC	AE	AF	AH	AJ	AP	AR	AT	AX	AY
20 [0.787]	156 [6.142]	15 [0.591]	136 [5.354]	55 [2.165]	40 [1.575]	25 [0.984]	15.5 [0.610]	6.8 [0.268]	7.5 [0.295]	3.2 [0.126]	31.2 [1.228]	27 [1.063]
25 [0.984]	156 [6.142]	20 [0.787]	136 [5.354]	55 [2.165]	40 [1.575]	30 [1.181]	17 [0.669]	6.8 [0.268]	9.5 [0.374]	3.2 [0.126]	34.6 [1.362]	30 [1.181]
32 [1.260]	156 [6.142]	25 [0.984]	136 [5.354]	55 [2.165]	40 [1.575]	35 [1.378]	20 [0.787]	6.8 [0.268]	9.5 [0.374]	3.2 [0.126]	41.6 [1.638]	36 [1.417]
40 [1.575]	156 [6.142]	25 [0.984]	136 [5.354]	75 [2.953]	55 [2.165]	40 [1.575]	23.5 [0.925]	9 [0.354]	9.5 [0.374]	4 [0.157]	47.3 [1.862]	41 [1.614]


Dimensions of Flange Mounting Type mm [in.]

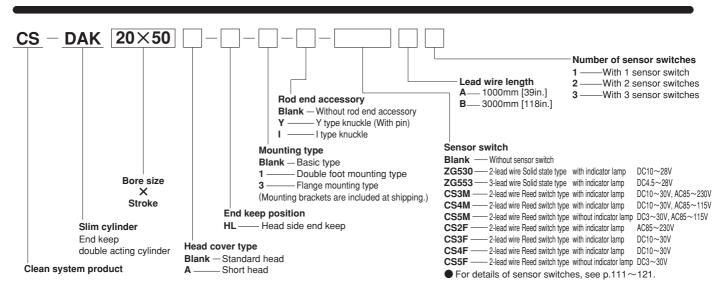
LEAN SLIM END KEEP CYLINDERS

Head Side End Keep Double Acting Type

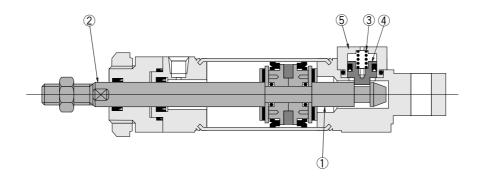
Symbol

Specifications

Item Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]						
Operating type	Double acting type, with head side end keep mechanism									
Media	Air									
Mounting type	Basic type, Foot type, Flange type									
Operating pressure range MPa [psi.]	0.1~0.9 [15~131]									
Proof pressure MPa [psi.]	1.32 [191]									
Operating temperature range °C [°F]	0~60 [32~140]									
Operating speed range mm/s [in./sec.]	50~300 [2.0~11.8]									
Cushion	Fixed type (Rubber bumper)									
Lubrication		Not re	quired							
Maximum holding force (at end keep) N [lbf.]	194.2 [43.66]	303 [68.11]	496.2 [111.5]	775.7 [174.4]						
Backlash (at end keep) mm [in.]	1.4 [0.055] MAX. 1.6 [0.063] MAX.									
Port size Rc	1/8									


Bore Size and Stroke

			mm [in.]
Bore size	Standard strokes	Maximum stroke	Maximum available stroke
20 [0.787]	25 50 75 100 125 150	200	
25 [0.984]	25 50 75 100 125 150 200	250	1050
32 [1.260]	25 50 75 100 125 150 200	300	1030
40 [1.575]	25 50 75 100 125 150 200 250 300	400	


Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039}_{0}$]

- 2. For non-standard strokes, consult us.
- 3. The minimum operating pressure when the stroke is over the maximum stroke at bore size of ϕ 20 [0.787] $\sim \phi$ 40 [1.575] is 0.2MPa [29psi.].

Order Codes

●For the order codes of additional parts, see p. 64.

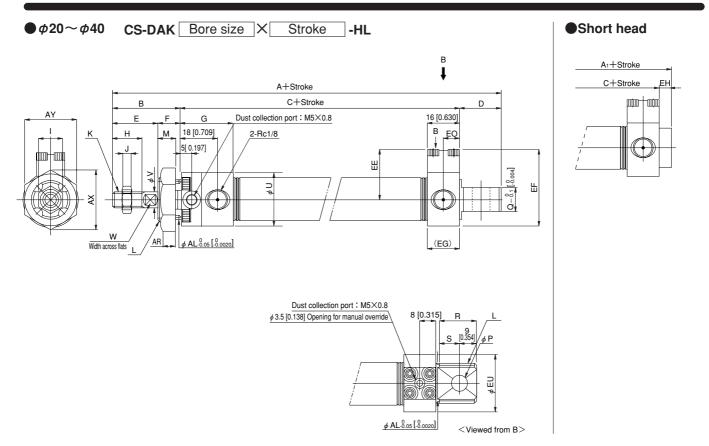
Major Parts and Materials

Parts	Bore size mm	20, 25	32, 40			
1	Piston rod A	Steel (chro	me plated)			
2	Piston rod B	Stainle	ss steel			
3	Spring	Stainless steel	Piano wire			
4	Lock piston	Stainle	ss steel			
(5)	Lock cover	Aluminum alloy (anodized)				
	Y type knuckle, I type knuckle	Mild steel (n	ickel plated)			

Other than the items listed above, they are the same as for the standard Slim Cylinder.

Seals

Parts	Rod seal	Lock piston seal	Lock cover gasket
Bore mm Quantity	1	1	1
20	GYH-9	MYN-5	_
25	GYH-11	MYN-5	_
32	_	MYN-10A	S18
40	_	MYN10-A	S18


Other than the items listed above, they are the same as for the standard Slim Cylinder.

Mass

								g [oz.]	
	Zero stro	oke mass	Additional mass	cket					
Bore size mm [in.]	-HL: Head s	ide end keep	for each 1mm	Foot bracket	Flange bracket	Pivot bracket	Y type knuckle	I type knuckle	
[]	Basic type	Short head type	[0.0394in.] stroke	root bracket	rialige bracket	FIVOI DIACKEI	1 type knuckie	i type kiluckie	
20 [0.787]	170 [6.00]	160 [5.64]	0.8 [0.028]	140 [4.94]	80 [2.82]	60 [2.12]	41 [1.45]	36 [1.27]	
25 [0.984]	240 [8.47]	230 [8.11]	1.1 [0.039]	160 [5.64]	80 [2.82]	60 [2.12]	75 [0.65]	70 [0 47]	
32 [1.260]	410 [14.46]	390 [13.76]	1.5 [0.053]	190 [6.70]	100 [3.53]	140 [4.94]	75 [2.65]	70 [2.47]	
40 [1.575]	580 [20.46]	560 [19.75]	2.4 [0.085]	290 [10.23]	130 [4.59]	140 [4.94]	120 [4.23]	132 [4.66]	

Calculation example: For head side end keep foot mounting type of 32mm bore size and 100mm stroke $410+190+(1.5\times100)=750g$ [26.46 oz.]

-HL Dimensions of Head Side End Keep Basic Type mm [in.]

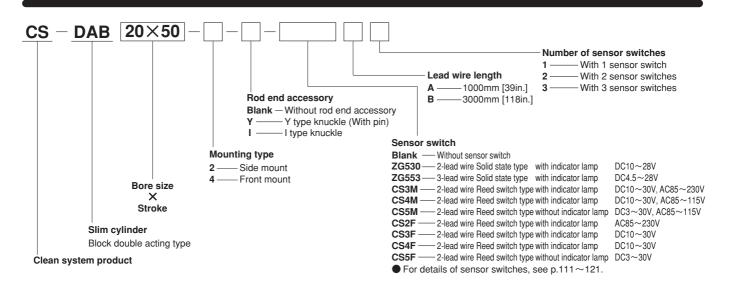
Bore	Code	Α	A ₁	В	С	D	Е	F	G	Н	I	J	K	L	М	Р	Q	R	S	U	V	W
20	0 [0.787]	142 [5.591]	127 [5.000]	35 [1.378]	86 [3.386]	21 [0.827]	23 [0.906]	12 [0.472]	26 [1.024]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	M20×1.5	10 [0.394]	8 [0.315]	12 [0.472]	19 [0.748]	10 [0.394]	27 [1.063]	8 [0.315]	6 [0.236]
2	5 [0.984]	147 [5.787]	132 [5.197]	40 [1.575]	86 [3.386]	21 [0.827]	26 [1.024]	14 [0.551]	26 [1.024]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	M22×1.5	12 [0.472]	8 [0.315]	12 [0.472]	19 [0.748]	10 [0.394]	29 [1.142]	10 [0.394]	8 [0.315]
3	2 [1.260]	170 [6.693]	144 [5.669]	45 [1.772]	98 [3.858]	27 [1.063]	31 [1.220]	14 [0.551]	26 [1.024]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	M27×2	12 [0.472]	10 [0.394]	20 [0.787]	25 [0.984]	15 [0.591]	35 [1.378]	12 [0.472]	10 [0.394]
40	0 [1.575]	175 [6.890]	149 [5.866]	45 [1.772]	103 [4.055]	27 [1.063]	31 [1.220]	14 [0.551]	25 [0.984]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	M33×2	12 [0.472]	10 [0.394]	20 [0.787]	25 [0.984]	15 [0.591]	41.6 [1.638]	16 [0.630]	14 [0.551]

Bore Code	AR	AX	AY	AL	EE	EF	EG	EH	EO
20 [0.787]	7.5 [0.295]	31.2 [1.228]	27 [1.063]	20 [0.787]	24 [0.945]	38.5 [1.516]	16 [0.630]	6 [0.236]	8 [0.315]
25 [0.984]	9.5 [0.374]	34.6 [1.362]	30 [1.181]	22 [0.866]	25 [0.984]	42.5 [1.673]	16 [0.630]	6 [0.236]	8 [0.315]
32 [1.260]	9.5 [0.374]	41.6 [1.638]	36 [1.417]	27 [1.063]	30 [1.181]	47.5 [1.870]	26 [1.024]	1 [0.039]	14 [0.551]
40 [1.575]	9.5 [0.374]	47.3 [1.862]	41 [1.614]	33 [1.299]	32.2 [1.268]	53 [2.087]	31 [1.220]	1 [0.039]	16 [0.630]

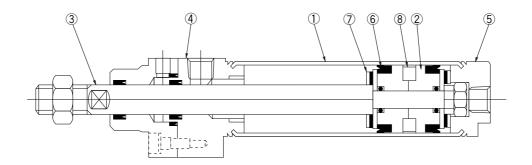
Symbol

Specifications

Item Bore size mm [in.]	16~40 [0.630~1.575]
Operating type	Double acting type
Media	Air
Mounting type	Side mount, Front mount
Operating pressure range MPa [psi.]	0.1~0.9 [15~131]
Proof pressure MPa [psi.]	1.32 [191]
Operating temperature range °C [°F]	0~60 [32~140]
Operating speed range mm/s [in./sec.]	30~300 [1.2~11.8]
Cushion	Fixed type (Rubber bumper)
Lubrication	Not required
Port size Rc	1/8


Bore Size and Stroke

			mm [in.]
Bore size	Standard strokes	Maximum stroke	Maximum available stroke
16 [0.630]	15 25 50 75 100	100	300
20 [0.787]	25 50 75 100 125 150	150	
25 [0.984]	25 50 75 100 125 150 200	200	F00
32 [1.260]	25 50 75 100 125 150 200	200	500
40 [1.575]	25 50 75 100 125 150 200 250 300	300	


Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039}_{0}$]

2. For non-standard strokes, consult us.

Order Codes

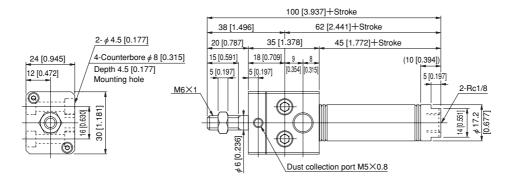
●For the order codes of additional parts, see p. 64.

Major Parts and Materials

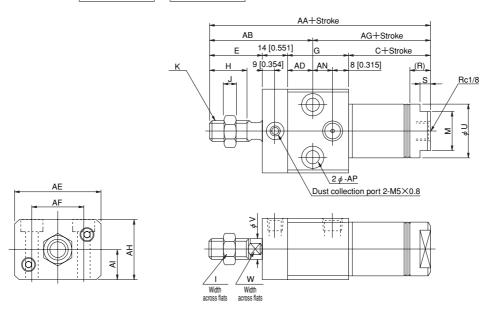
Parts	Bore size mm	16~40					
1	Cylinder tube	Stainless steel					
2	Piston	Plastic					
3	Piston rod	Stainless steel					
4	Rod cover	Aluminum (anadizad)					
(5)	Head cover	Aluminum (anodized)					
6	Seal	Cupth atio with how (NIDD)					
7	Bumper	Synthetic rubber (NBR)					
8	Magnet	Plastic magnet					
	I type knuckle, Y type knuckle	Mild steel (nickel plated)					

Seals

Parts	Rod seal	Piston seal	Dust leak prevention seal
Bore mm Quantity	1	2	1
16	NY-3-6	PPY-16	NY-3-6
20	NY-12×8×3.5	PPY-20	NY-12×8×3.5
25	NY-14×10×3.5	PPY-25	NY-14×10×3.5
32	NY-17×12×4	PPY-32	NY-17×12×4
40	NY-22×16×5	PPY-40	NY-22×16×5

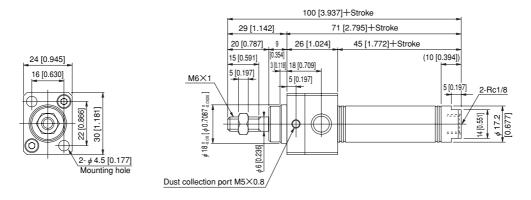

Other than the items listed above, they are the same as for the standard Slim Cylinder.

Mass

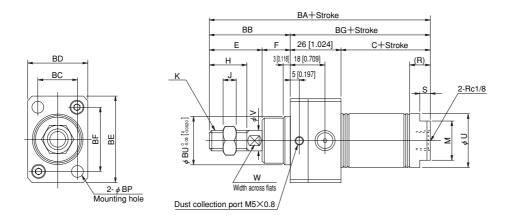

					g [oz.]		
Bore size	Zero stro	oke mass	Additional mass for each	Mass of	knuckle		
mm [in.]	Side mount	Front mount	1mm [0.0394in.] stroke	Y type knuckle	I type knuckle		
16 [0.630]	90 [3.17]	80 [2.82]	0.5 [0.018]	17 [0.60]	20 [0.71]		
20 [0.787]	160 [5.64]	130 [4.59]	0.8 [0.028]	41 [1.45]	36 [1.27]		
25 [0.984]	220 [7.76]	190 [6.70]	1.1 [0.039]	75 [2.65]	70 [2.47]		
32 [1.260]	340 [11.99]	270 [9.52]	1.5 [0.053]	75 [2.65]	70 [2.47]		
40 [1.575]	560 [19.75]	390 [13.76]	2.4 [0.085]	120 [4.23]	132 [4.66]		

Calculation example: For the mass of side mount type of 32mm bore size and 100mm stroke $340+(1.5\times100)=490g$ [17.28 oz.]

$\bullet \phi 16$ CS-DAB16 \times Stroke -2

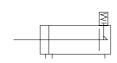


● φ20~ φ40 CS-DAB × Bore size × Stroke -2



Bore Code	С	Е	G	Н	_	J	K	М	R	S	U	V	W	AA	AB	AD	AE	AF	AG	АН	Al	AN	AP
20 [0.787]	53 [2.087]	23 [0.906]	28 [1.102]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	17 [0.669]	9 [0.354]	5 [0.197]	21.4 [0.843]	8 [0.315]	6 [0.236]	118 [4.646]	48 [1.890]	11 [0.433]	38 [1.496]	22 [0.866]	70 [2.756]	28 [1.102]	14 [0.551]	9 [0.354]	φ6.6 [0.260] Counterbore φ11 [0.433] Depth 6.5 [0.256]
25 [0.984]	53 [2.087]	26 [1.024]	30 [1.181]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	19 [0.748]	9 [0.354]	5 [0.197]	26.4 [1.039]	10 [0.394]	8 [0.315]	123 [4.843]	52 [2.047]	12 [0.472]	42 [1.654]	26 [1.024]	71 [2.795]	30 [1.181]	15 [0.591]	10 [0.394]	φ6.6 [0.260] Counterbore φ11 [0.433] Depth 6.5 [0.256]
32 [1.260]	54 [2.126]	31 [1.220]	36 [1.417]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	22 [0.866]	10 [0.394]	6 [0.236]	33.6 [1.323]	12 [0.472]	10 [0.394]	135 [5.315]	59 [2.323]	14 [0.551]	54 [2.126]	34 [1.339]	76 [2.992]	36 [1.417]	18 [0.709]	14 [0.551]	φ9 [0.354] Counterbore φ14 [0.551] Depth 8.6 [0.339]
40 [1.575]	60 [2.362]	31 [1.220]	44 [1.732]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	22 [0.866]	12 [0.472]	6 [0.236]	41.6 [1.638]	16 [0.630]	14 [0.551]	149 [5.866]	62 [2.441]	17 [0.669]	68 [2.677]	46 [1.811]	87 [3.425]	44 [1.732]	22 [0.866]	19 [0.748]	φ11 [0.433] Counterbore φ17.5 [0.689] Depth 10.8 [0.425]

● φ20 ~ φ40 CS-DAB Bore size X Stroke -4

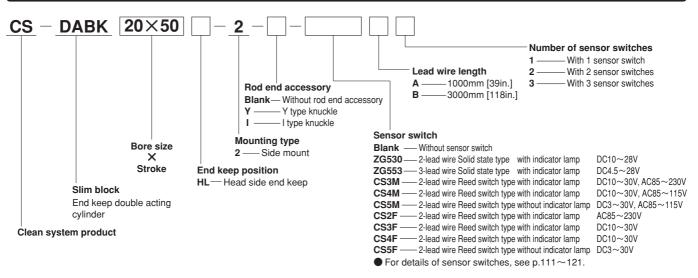

Bore Code	С	Е	F	Н	I	J	K	М	R	S	U	V	W	BA	BB	ВС	BD	BE	BF	BG	BP	BU
20 [0.787]	53 [2.087]	23 [0.906]	12 [0.472]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	17 [0.669]	10 [0.394]	5 [0.197]	21.4 [0.843]	8 [0.315]	6 [0.236]	114 [4.488]	35 [1.378]	28 [1.102]	18 [0.709]	38 [1.496]	28 [1.102]	79 [3.110]	5.5 [0.217]	22 [0.866]
25 [0.984]	53 [2.087]	26 [1.024]	14 [0.551]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	19 [0.748]	10 [0.394]	5 [0.197]	26.4 [1.039]	10 [0.394]	8 [0.315]	119 [4.685]	40 [1.575]	30 [1.181]	20 [0.787]	42 [1.654]	32 [1.260]	79 [3.110]	5.5 [0.217]	24 [0.945]
32 [1.260]	54 [2.126]	31 [1.220]	14 [0.551]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	22 [0.866]	11 [0.433]	6 [0.236]	33.6 [1.323]	12 [0.472]	10 [0.394]	125 [4.921]	45 [1.772]	36 [1.417]	24 [0.945]	54 [2.126]	42 [1.654]	80 [3.150]	6.6 [0.260]	28 [1.102]
40 [1.575]	60 [2.362]	31 [1.220]	14 [0.551]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	22 [0.866]	13 [0.512]	6 [0.236]	41.6 [1.638]	16 [0.630]	14 [0.551]	131 [5.157]	45 [1.772]	44 [1.732]	28 [1.102]	68 [2.677]	52 [2.047]	86 [3.386]	9 [0.354]	34 [1.339]

Head Side End Keep Double Acting Type

Symbols

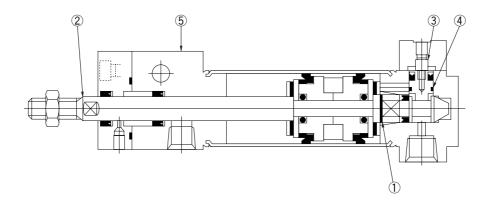
KOGANEI

Specifications


Item Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]								
Operating type	Γ	ouble acting type, with head s	ide stroke end keep mechanism	1								
Media	Air											
Mounting type	Side mount											
Operating pressure range MPa [psi.]	e MPa [psi.] 0.1~0.9 [15~131]											
Proof pressure MPa [psi.]	MPa [psi.] 1.32 [191]											
Operating temperature range °C [°F]		0~60[3	32~140]									
Operating speed range mm/s [in./sec.]		50~300 [2.0~11.8]									
Cushion		Fixed type (Ru	ubber bumper)									
Lubrication		Not re	quired									
Maximum holding force (at end keep) N [lbf.]	194.2 [43.66]	303 [68.11]	496.2 [111.5]	775.7 [174.4]								
Backlash (at end keep) mm [in.]	1.4 [0.05	55] MAX.	1.6 [0.06	3] MAX.								
Port size Rc	mm [in.] 1.4 [0.055] MAX. 1.6 [0.063] MAX.											

Bore Size and Stroke

			mm [in.]
Bore size	Standard strokes	Maximum stroke	Maximum available stroke
20 [0.787]	25 50 75 100 125 150	150	
25 [0.984]	25 50 75 100 125 150 200	200	500
32 [1.260]	25 50 75 100 125 150 200	200	300
40 [1.575]	25 50 75 100 125 150 200 250 300	300	


Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039}_{0}$]

Order Codes

● For the order codes of additional parts, see p. 64.

^{2.} For non-standard strokes, consult us.

Major Parts and Materials

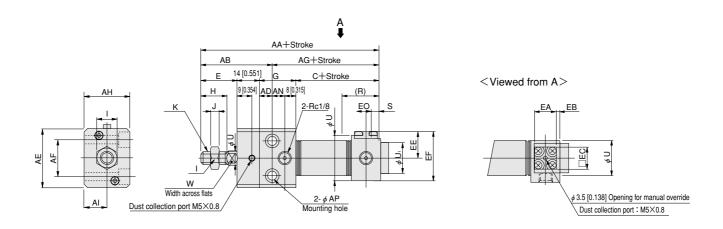
Parts	Bore size mm	20, 25	32, 40						
1	Piston rod A	Steel (chro	me plated)						
2	Piston rod B	Stainless steel							
3	Spring	Stainless steel	Piano wire						
4	Lock piston	Stainle	ss steel						
(5)	Lock cover	Aluminum (anodized)							
	Y type knuckle, I type knuckle	Mild steel (nickel plated)							

Other than the items listed above, it is the same as for the standard Slim Cylinder.

Seals

Parts	Rod seal	Lock piston seal	Lock cover gasket
Bore mm Quantity	1	1	1
20	GYH-9	MYN-5	_
25	GYH-11	MYN-5	_
32	_	MYN-10A	S18
40	_	MYN10-A	S18

Other than the items listed above, it is the same as for the standard Slim Cylinder.


Mass

				g [oz]
	Zero stroke mass	A L Por	Mass of	g [oz.]
Bore size mm [in.]	-HL : Head side end keep Side mount	Additional mass for each 1mm [0.0394in.] stroke	Y type knuckle	I type knuckle
20 [0.787]	210 [7.41]	0.8 [0.028]	41 [1.45]	36 [1.27]
25 [0.984]	310 [10.93]	1.1 [0.039]	75 [0.65]	70 [0 47]
32 [1.260]	500 [17.64]	1.5 [0.053]	75 [2.65]	70 [2.47]
40 [1.575]	900 [31.75]	2.4 [0.085]	120 [4.23]	132 [4.66]

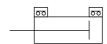
Calculation example: For head side end keep side mount type of 32mm bore size and 100mm stroke, 500+(1.5×100)=650g [22.93 oz.]

-HL Dimensions of Head Side End Keep, Side Mounting Type $_{\text{mm}}$ [in.]

$\Phi \phi 20 \sim \phi 40$

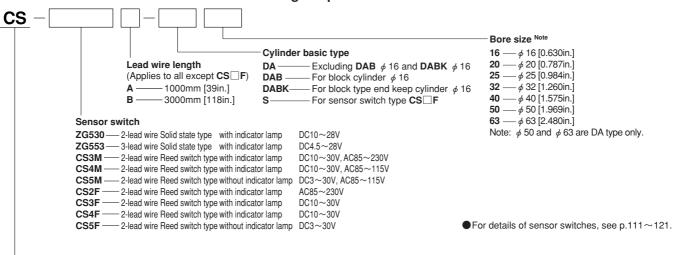
The drawings for sizes ϕ 32 and ϕ 40 (The outward shape of the size ϕ 20 and ϕ 25 head covers is larger than the block portion.)

Bore Cod	C	Е	G	Н	I	J	K	R	S	U	U ₁	V	W
20 [0.787]	60 [2.362]	23 [0.906]	28 [1.102]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	16 [0.630]	6 [0.236]	29 [1.142]	20 [0.787]	8 [0.315]	6 [0.236]
25 [0.984]	60 [2.362]	26 [1.024]	30 [1.181]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	16 [0.630]	6 [0.236]	35 [1.378]	22 [0.866]	10 [0.394]	8 [0.315]
32 [1.260]	72 [2.835]	31 [1.220]	36 [1.417]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	26 [1.024]	1 [0.039]	35 [1.378]	27 [1.063]	12 [0.472]	10 [0.394]
40 [1.575]	79 [3.110]	31 [1.220]	44 [1.732]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	32 [1.260]	1 [0.039]	41.6 [1.638]	33 [1.299]	16 [0.630]	14 [0.551]

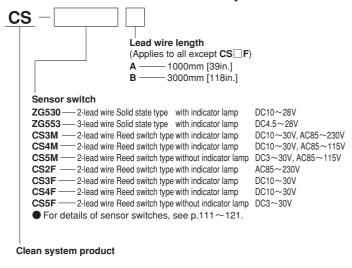

Bore Code	AA	AB	AD	AE	AF	AG	AH	Al	AN	AP		EB	EC	EE	EF	EO
20 [0.787]	131 [5.157]	48 [1.890]	11 [0.433]	38 [1.496]	22 [0.866]	83 [3.268]	28 [1.102]	14 [0.551]	9 [0.354]	φ 6.6 [0.260] Counterbore φ 11 [0.433] Depth 6.5 [0.256]	16 [0.630]	_	16 [0.630]	24 [0.945]	38.5 [1.516]	8 [0.315]
25 [0.984]	136 [5.354]	52 [2.047]	12 [0.472]	42 [1.654]	26 [1.024]	84 [3.307]	30 [1.181]	15 [0.591]	10 [0.394]	φ 6.6 [0.260] Counterbore φ 11 [0.433] Depth 6.5 [0.256]	16 [0.630]	_	16 [0.630]	25 [0.984]	42.5 [1.673]	8 [0.315]
32 [1.260]	154 [6.063]	59 [2.323]	14 [0.551]	54 [2.126]	34 [1.339]	95 [3.740]	36 [1.417]	18 [0.709]	14 [0.551]	φ 9 [0.354] Counterbore φ 14 [0.551] Depth 8.6 [0.339]	24 [0.945]	2 [0.079]	25 [0.984]	30 [1.181]	(40.5) ([1.594])	14 [0.551]
40 [1.575]	169 [6.654]	62 [2.441]	17 [0.669]	68 [2.677]	46 [1.811]	107 [4.213]	44 [1.732]	22 [0.866]	19 [0.748]	φ 11 [0.433] Counterbore φ 17.5 [0.689] Depth 10.8 [0.425]	24 [0.945]	4 [0.157]	25 [0.984]	32.5 [1.280]	(46) ([1.811])	16 [0.630]

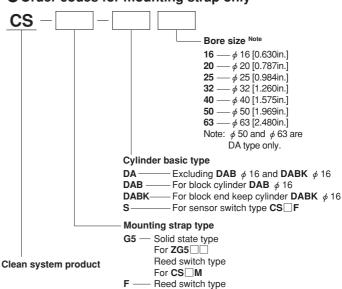
SLIM CYLINDERS

Sensor Switches


Since a magnet comes standard in the Slim cylinders series, mounting a sensor switch will enable use in sensor switch applications.

Symbol

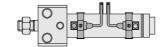

Order Codes

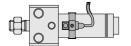


Clean system product

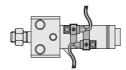
Order codes for sensor switch only

Order codes for mounting strap only


For **CS** \square **F**

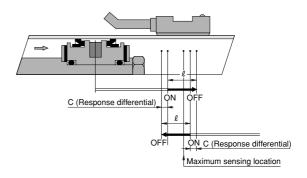

Minimum Cylinder Strokes When Using Sensor Switches

- 1						
		mm [in.]				
ĺ	Sensor switch	Bore size	2 pcs. n	4		
ı	model	Bore Size	In-line	In staggered positions	1 pc. mounting	
	ZG530	16 [0.630]	20 [0.787]	10 [0.394]	10 [0.394]	
	ZG553	20~63 [0.787~2.480]	20 [0.787]	10 [0.394]	10 [0.394]	
ĺ	CS□M	16~63 [0.630~2.480]	20 [0.787]	15 [0.591]	15 [0.591]	
_	CS□F	20~63 [0.787~2.480]	40 [1.575]	21 [0.827]	15 [0.591]	


■Two pieces mounting One piece mounting

When mounted in-line

When mounted in staggered positions


Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

lacktriangle Operating range : ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

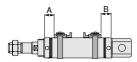
Response differential : C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

|--|

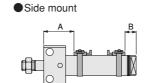
Item	Bore size	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
	ZG530	2.5~4.1 [0.098~0.161]	2.5~4.2 [0.098~0.165]	2.6~4.3 [0.102~0.169]	3.0~4.8 [0.118~0.189]	3.1~5.0 [0.122~0.197]	3.3~5.4 [0.130~0.213]	3.5~5.7 [0.138~0.224]
Operating range: ℓ	CS□M	6.7~7 [0.264~0.276]	7~8.5 [0.276~0.335]	7~8.5 [0.276~0.335]	8~9 [0.315~0.354]	9~10.5 [0.354~0.413]	7~8 [0.276~0.315]	8~9.5 [0.315~0.374]
	CS□F	_	7~8.5 [0.276~0.335]	8.5~10 [0.335~0.394]	9~10.5 [0.354~0.413]	10.5~12 [0.413~0.472]	9~10 [0.354~0.394]	9~10.5 [0.354~0.413]
	ZG530	0.7 [0.028] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.8 [0.032] or less	0.8 [0.032] or less
Response differential : C	ZG533	0.7 [0.028] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.8 [0.032] or less	0.8 [0.032] or less
nesponse differential . C	CS□M	1 [0.039] or less	1.2 [0.047] or less	1.2 [0.047] or less				
	CS□F	_	1.5 [0.059] or less	2 [0.079] or less	1.5 [0.059] or less			
Maximum sensing	ZG530, ZG553 Note 1	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]
location	CS M Note 1	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]
iocation	CS F Note 2	_	16 [0.630]	16 [0.630]	16 [0.630]	16 [0.630]	16 [0.630]	16 [0.630]

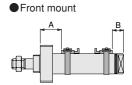
Remark: Figures in the table above are reference values.


Notes: 1. Figures are from the end surface that is opposite to the lead wires.

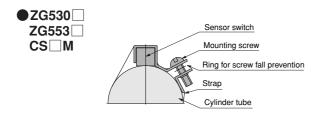
2. Figures are from the end surface of the connector side.

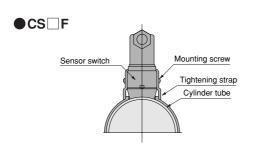
Mounting Location of End of Stroke Detection Sensor Switch


When the sensor switch is mounted in the location shown in the diagram below (figures in the table are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.


Double acting cylinder

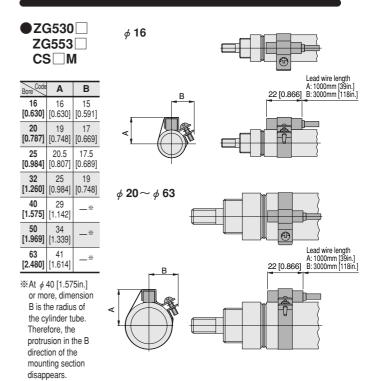
							mm [in.]	
Sensor	Bore size	Double acting cylinder						
switch model	Code	20	32	32	40	50	63	
ZG530□	Α	37 [1.456]	37 [1.456]	37 [1.456]	38.5 [1.516]	45 [1.772]	45 [1.772]	
ZG553□	В	27 [1.063]	27 [1.063]	27 [1.063]	27 [1.063]	36 [1.417]	36 [1.417]	
CS□M	Α	37 [1.456]	37 [1.456]	37 [1.456]	38.5 [1.516]	45 [1.772]	45 [1.772]	
OS_IM	В	27 [1.063]	27 [1.063]	27 [1.063]	27 [1.063]	36 [1.417]	36 [1.417]	
CS□F	Α	32 [1.260]	32 [1.260]	32 [1.260]	32 [1.260]	41 [1.614]	41 [1.614]	
	В	22 [0.866]	22 [0.866]	22 [0.866]	22 [0.866]	32 [1.260]	32 [1.260]	

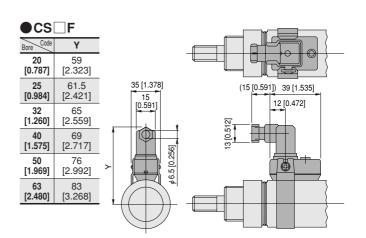

Block cylinder



											mm	[in.]			
Mounti	ng type			Side	e mo	ount					Fro	nt m	ount		
Bore	size	16	20	25	32	40	50	63	16	20	25	32	40	50	63
ZG530□	A Rod side	42 [1.654]	53 [2.087]	55 [2.165]	61 [2.402]	71 [2.795]	81 [3.189]	81 [3.189]	33 [1.299]	37 [1.457]	37 [1.457]	37 [1.457]	39 [1.535]	47 [1.850]	47 [1.850]
ZG553□	B Rod side	16 [0.630]	20 [0.787]	20 [0.787]	21 [0.827]	25 [0.984]	45 [1.772]	45 [1.772]	16 [0.630]	20 [0.787]	20 [0.787]	21 [0.827]	25 [0.984]	45 [1.772]	45 [1.772]
	A Rod side	42 [1.654]	53 [2.087]	55 [2.165]	61 [2.402]	71 [2.795]	80 [3.150]	80 [3.150]	33 [1.299]	37 [1.457]	37 [1.457]	37 [1.457]	39 [1.535]	46 [1.811]	46 [1.811]
CS□M	B Rod side	16 [0.630]	20 [0.787]	20 [0.787]	21 [0.827]	25 [0.984]	44 [1.732]	44 [1.732]	16 [0.630]	20 [0.787]	20 [0.787]	21 [0.827]	25 [0.984]	44 [1.732]	44 [1.732]
Ce□E	A Rod side	_	50 [1.969]	52 [2.047]	58 [2.283]	66 [2.598]	78 [3.071]	78 [3.071]	_	34 [1.339]	34 [1.339]	34 [1.339]	34 [1.339]	44 [1.732]	44 [1.732]
CS□F	B Rod side	_	17 [0.669]	17 [0.669]	18 [0.709]	20 [0.787]	42 [1.654]	42 [1.654]	_	17 [0.669]	17 [0.669]	18 [0.709]	22 [0.866]	42 [1.654]	42 [1.654]

Moving Sensor Switch



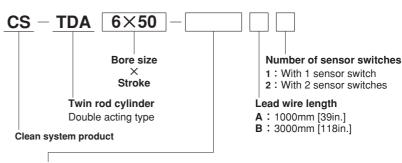

- Loosening the mounting screw allows the sensor switch to be moved freely along with the strap in the axial and circumferential direction. The sensor switch alone cannot be moved.
- To remove the sensor switch from the strap, first detach the strap from the cylinder tube and then remove the sensor switch from the strap.
- Tighten the mounting screw with a tightening torque of 49N·cm [4.3in·lbf] or less.

- Loosening the mounting screw allows the sensor switch to be moved freely in the axial and circumferential direction.
- Slightly loosening the mounting screw allows fine adjustment of the lead switch only, up to 5mm [0.197in.] in the axial direction.
 Tighten the mounting screw with a tightening torque of 68.6N·cm [6.1in·lbf] or less.

Dimensions of Sensor Switch mm [in.]

Symbol

Specifications


Item	Bore size mm [in.]	6 [0.236]		
Media		Air		
Mounting type		Side mount		
Operating pressure	range MPa [psi.]	0.3~0.7 [44~102]		
Proof pressure	MPa [psi.]	1.03 [149]		
Operating tempera	ture range °C [°F]	0~60 [32~140]		
Operating speed ra	inge mm/s [in./sec.]	100~300 [3.9~11.8]		
Cushion		None		
Lubrication		Not required		
Non-rotating accura	асу	±0.45°		
Dout oins	Supply and exhaust port	M5×0.8		
Port size	Dust collection port	M5×0.8		

Bore Size and Stroke

		mm [in.]
Bore size	Standard strokes	Maximum available stroke
6 [0.236]	10, 20, 30, 40, 50	70

Note: Consult us for delivery of cylinders with strokes exceeding the standard.

Order Codes

Sensor switch

Blank: Without sensor switch

 $\textbf{CS5T} : 2\text{-lead wire Reed switch type without indicator lamp } (DC5 \sim 28V, AC85 \sim 115V)$

CS11T : 2-lead wire Reed switch type with indicator lamp (DC10 \sim 28V) **ZC130 :** 2-lead wire Solid state type with indicator lamp (DC10 \sim 28V) **ZC153 :** 2-lead wire Solid state type with indicator lamp (DC4.5 \sim 28V)

lacktriangle For details of sensor switches, see p.111 \sim 121.

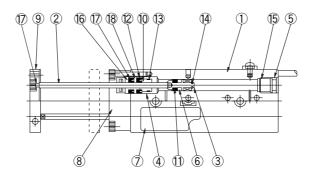
Remarks: 1. In the twin rod cylinder, a magnet for sensor switch is built-in.

2. Two sensor holders (one for the A surface and one for the B surface) come with 1 sensor switch.

Mass

				g [oz.			
	Bore size		Additional mass				
		Zero stroke mass Note1	Additional mass of each 10mm	Mass of 1 sensor switch Note2			
mm [in.]			[0.394in.] stroke	CS5T,CS11T,ZC130,ZC153			
6 [0.236]	Standard specification	68 [2.40]	12 [0.42]	A:20 [0.71] B:50 [1.76]			

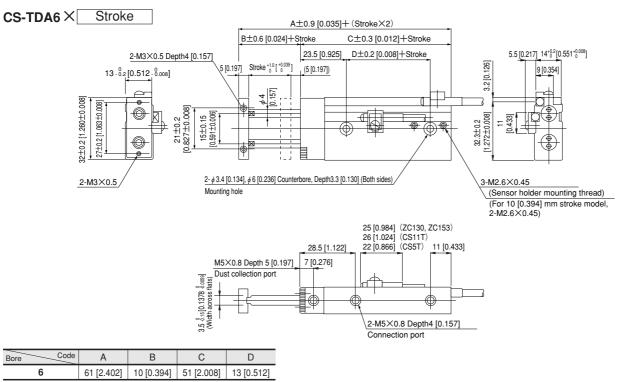
Notes: 1. The above table is for the standard strokes.


2. There are 2 types of sensor switch lead wire lengths.

A: 1000mm [39in.], B: 3000mm [118in.]

Calculation example: The mass for bore size of 20mm and stroke of 50mm with 2 sensor switches (**ZC130**),

 $68+(12\times5)+(20\times2)=168g$ [5.93oz.]

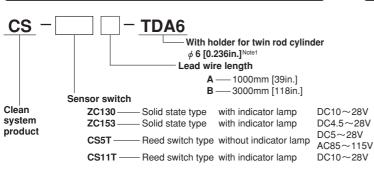

Major Parts and Materials

NI.	Davita	Matariala
No.	Parts	Materials
1	Cylinder body	Aluminum alloy (anodized)
2	Piston	Aluminum alloy (chromic acid anodic oxide coating)
3	Cover	Aluminum alloy (anodized)
4	Wear ring	Plastic
(5)	Piston rod	Steel (chrome plated)
6	Housing gasket	Synthetic rubber (NBR)
7	Housing	Aluminum alloy (chromic acid anodic oxide coating)
8	Seal holder	Aluminum alloy
9	Rod bushing	Plastic
10	Piston seal	Synthetic rubber (NBR)
11)	Plug	Aluminum alloy (anodized)
12	Magnet	Plastic magnet
13	E-ring	Stainless steel
14)	Washer	Steel (nickel plated)
15	End plate	Mild steel (nickel plated)
16	Rod seal	
17	Dust leak prevention seal	Synthetic rubber
18	Plug gasket	

Seals

Parts	Rod seal	Piston seal	Plug gasket	Housing gasket	Dust leak prevention seal
Bore mm Q'ty	2	2	2	2	2
6	MYR-4	PWP-6	1.5×1.5	1×6	MYR-4

Dimensions mm [in.]



Note: The counterbore depth is measured from the upper surface of the body.

TWIN ROD CYLINDERS φ 6

Sensor Switches

Order Codes

Order code of sensor holder only

C1-TDA6 Note2

Notes: 1. Two sensor holders (one for the A, C surface and one for the B surface) come with 1 sensor switch.

One set consists of 2 sensor holders (one each for the A, C surface and for the B surface).

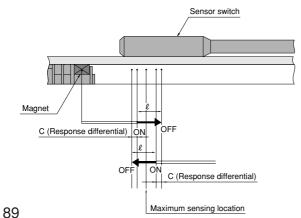
Remark: For the mounting surfaces, see p.90.

● For details of sensor switches, see p.111~121.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

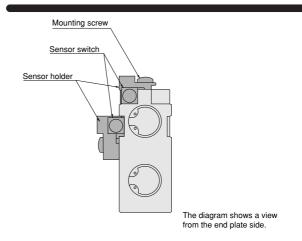

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

								mm [in.]	
CS5T□			CS11T□			ZC130□, ZC153□			
Operating range	Response differential	Maximum sensing location	Operating range	Response differential	Maximum sensing location	Operating range	Response differential	Maximum sensing location	
5~7 [0.197~ 0.276]	1.3 [0.051] or less	7 [0.276]	5~7 [0.197~ 0.276]	1.3 [0.051] or less	10.5 [0.413]	2~3 [0.079~ 0.118]	0.3 [0.012] or less	8.5 [0.335]	

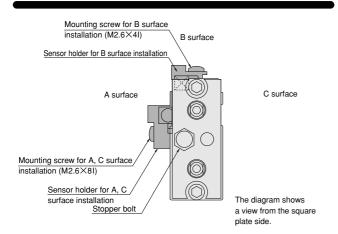
Note: The maximum sensing location is the distance from the end of the switch opposite to the lead wire.

Remark: The above table shows reference values

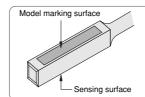


Minimum Cylinder Strokes When Using Sensor Switches

				mm [in.]	
T f	2				
Type of sensor	1-surface	mounting	2-surface	1 pc.	
switch	One groove on each A surface and B surface	Two grooves on B surface	mounting	mounting	
CS□T□	40 [1.575]	10 [0.394]	10 [0.394]	10 [0.394]	
zc 🗆 🗆	40 [1.575]	10 [0.394]	10 [0.394]	10 [0.394]	

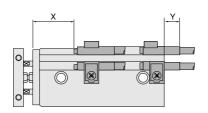

Remark: For the mounting surfaces, see p.90.

Moving Sensor Switch


- Loosening mounting screw allows the sensor switch to be moved freely in the cylinder's axial direction.
- Tighten the mounting screw with a tightening torque of 0.3N·m [2.7in·lbf] or less.

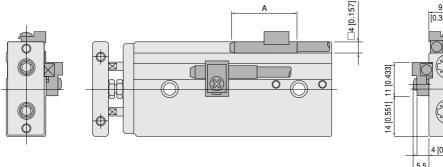
Sensor Switch Mounting Surface

- Mounting on either 1 or 2 surfaces of the A, B, or C surfaces allows detection of the rod side and head side stroke end.
- Since 2 sensor holders and 2 mounting screws (one for the A, C surface and one for the B surface) are provided for each sensor switch, use them in accordance with the required mounting surface.


Caution when mounting

In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

Mounting Location of End of Stroke Detection Sensor Switch


When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

			mm [in.]						
Mounting		Sensor switch type							
location	CS5T□	CS11T	ZC130 □, ZC153 □						
х	23 [0.906]	19.5 [0.768]	22 [0.866]						
Υ	6 [0.236]	6.5 [0.256]	8 [0.315]						

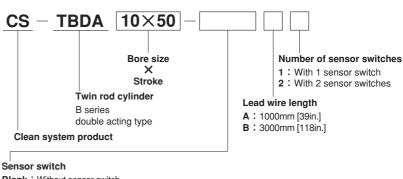
Remark: Mount the sensor switch so that the surface showing the model marking faces up.

Dimensions of Sensor Switch mm [in.]

Sensor switch Code		CS11T	ZC130□	ZC153□
Α	22 [0.866]	26 [1.024]	25 [0	.984]

Symbol

Specifications


Item	Bore size mm [in.]	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]				
Operating type				Air						
Media				Side mount						
Operating pressure rai	nge MPa [psi.]	0.15~0.7 [22~102]		0.1~0.7	[15~102]					
Proof pressure	MPa [psi.]	1.03 [149]								
Operating temperature	range °C [°F]			0~60 [32~140]						
Operating speed range	e mm/s [in./sec.]	100~300 [3.9~11.8]								
Cushion		None		Rubber	bumper					
Lubrication		Not required								
Non-rotating accuracy		±0.4° ±0.3°								
Port size	Supply port	M5×0.8 Rc1/8								
Port size	Dust collection port			M5×0.8						

Bore Size and Stroke

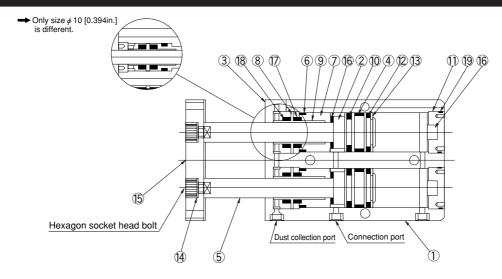
		mm [in.]
Bore size	Standard strokes	Maximum available stroke
10 [0.394]	10, 20, 30, 40, 50, 60, 70	140
16 [0.630]	10, 20, 30, 40, 50, 60, 70, 80, 90, 100	200
20 [0.787]	10, 20, 30, 40, 50, 60, 70, 80, 90, 100	200
25 [0.984]	10, 20, 30, 40, 50, 60, 70, 80, 90, 100	200
32 [1.260]	10, 20, 30, 40, 50, 60, 70, 80, 90, 100	200

Remark: Consult us for delivery of cylinders with strokes exceeding the standard.

Order Codes

Blank: Without sensor switch

ZE135: 2-lead wire, Solid state type with indicator lamp DC10 ~ 28V Horizontal lead wire **ZE235**: 2-lead wire, Solid state type with indicator lamp DC10 ~ 28V Vertical lead wire **ZE155**: 3-lead wire, Solid state type with indicator lamp DC4.5 ~ 28V Horizontal lead wire


ZE155: 3-lead wire, Solid state type with indicator lamp DC4.5~28V Horizontal lead wire
ZE255: 3-lead wire, Solid state type with indicator lamp DC4.5~28V Vertical lead wire
ZE101: 2-lead wire, Reed switch type without indicator lamp DC5~28V, AC85~115 Horizontal lead wire
ZE201: 2-lead wire, Reed switch type without indicator lamp DC5~28V, AC85~115 Vertical lead wire

ZE102: 2-lead wire, Reed switch type with indicator lamp DC10~28V, AC85~115V Horizontal lead wire **ZE202**: 2-lead wire, Reed switch type with indicator lamp DC10~28V, AC85~115V Vertical lead wire

● For details of sensor switches, see p.111 ~ 121.

Remark: In the standard cylinder, the magnet for sensor switch is built-in.

Inner Construction and Major Parts

Major Parts and Materials

No.	Parts	Materials						
1	Cylinder body	Aluminum alloy (anodized)						
2	Piston	Aluminum alloy (chromic acid anodic oxide coating)						
3	Cover	Aluminum alloy (anodized)						
4	Wear ring	Plastic						
(5)	Piston rod	Steel (chrome plated)						
6	Housing gasket	Synthetic rubber (NBR)						
7	Housing	Aluminum alloy (chromic acid anodic oxide coating)						
8	Seal holder	Mild steel (nickel plated)						
9	Rod bushing	Plastic						
10	Piston seal	Synthetic rubber (NBR)						
11)	Plug	Aluminum alloy (anodized)						
12	Magnet	Plastic magnet						
13	E-ring	Stainless steel						
14)	Washer	Steel (nickel plated)						
15)	End plate	Mild steel (nickel plated)						
16	Bumper	ϕ 10, 16, 20, 25 : Synthetic rubber, ϕ 32 : Urethane						
17	Rod seal							
18	Dust leak prevention seal	Synthetic rubber (NBR)						
19	Plug gasket							

Seals

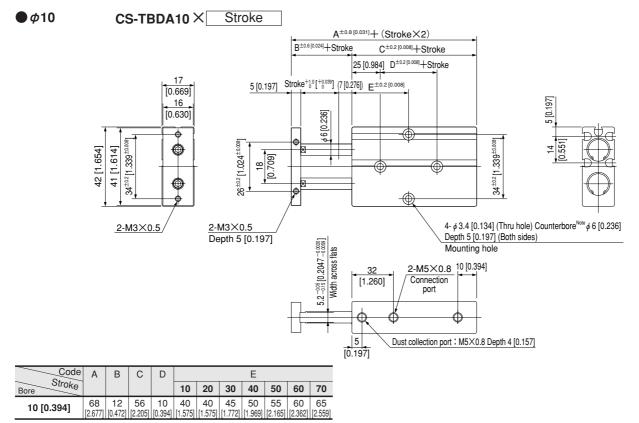
Parts	Rod seal	Piston seal	Plug gasket	Housing gasket	Dust leak prevention seal
Bore mm Q'ty	2	2	2	2	2
10	PIU-6	PWP-10	1.5×9	1.5×9	PIU-6
16	PIU-8	PWP-16	1.5×15	1.5×13	PIU-8
20	PIU-10	PWP-20	1.5×19.5	1.5×17	PIU-10
25	PIU-12	PWP-25	1.5×23	1.5×22	PIU-12
32	PIU-16	PWP-32	2×31.5	2×28.5	PIU-16

Mass

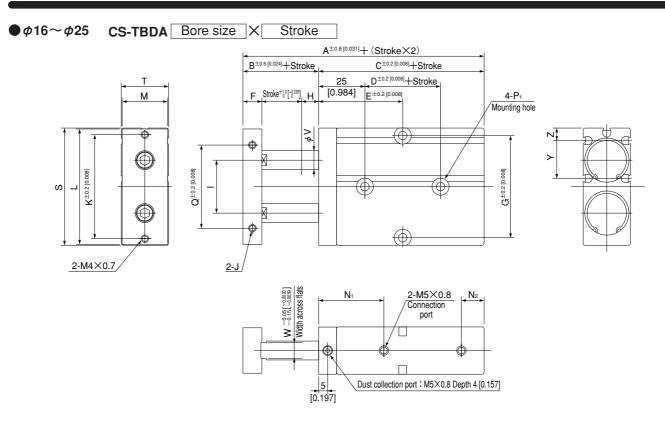
					g [oz.]	
	Bore size			Additional mass		
		Zero stroke mass Note1	Additional mass of each 10mm	Mass of 1 sen	sor switch Note2	
	mm [in.]		[0.394in.] stroke	ZE 🗆 🗆 A	ZE□□□B	
10 [0.394]		124 [4.37]	18 [0.63]			
16 [0.630]		235 [8.29]	27 [0.95]			
20 [0.787]	Standard specification	393 [13.86]	36 [1.27]	15 [0.53]	35 [1.23]	
25 [0.984]		584 [20.60]	51 [1.80]			
32 [1.260]		1329 [46.88]	93 [3.28]			

Notes: 1. The above table is for the standard strokes.

2. There are 2 types of sensor switch lead wire lengths.


A: 1000mm [39in.], B: 3000mm [118in.]

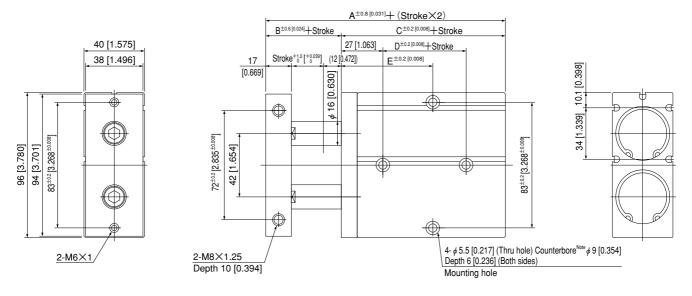
Calculation example: The mass for bore size of 20mm and stroke of 60mm with 2 sensor switches (**ZC135A**),

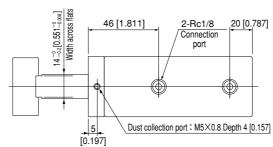

 $393+(36\times6)+(15\times2)=639g$ [22.54oz.]

Stroke

10

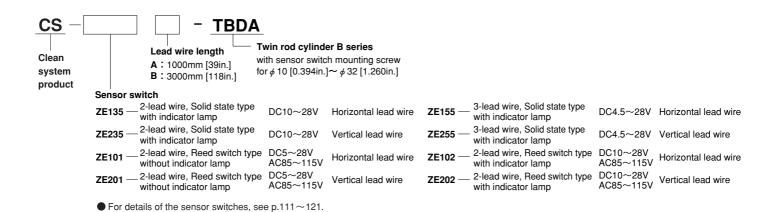
Note: The counterbore depth is measured from the upper surface of the body.




	Code A B C D E							F	G	Н	I	J	K	L	М	N ₁	N ₂							
Bore					10	20	30	40	50	60	70	80	90	100										
16 [0.630]	78 [3.071]	15 [0.591]	63 [2.480]	20 [0.787]	40 [1.575]	45 [1.772]	50 [1.969]	55 [2.165]	60 [2.362]	65 [2.559]	70 [2.756]	75 [2.953]	80 [3.150]	85 [3.346]	8 [0.315]	47 [1.850]	7 [0.276]	24 [0.945]	M4×0.7 Depth 5 [0.197]	47 [1.850]	53 [2.087]	20 [0.787]	32 [1.260]	1 O [0.394]
20 [0.787]	88 [3.465]	20 [0.787]	68 [2.677]	20 [0.787]	45 [1.772]	45 [1.772]	50 [1.969]	55 [2.165]	60 [2.362]	65 [2.559]	70 [2.756]	75 [2.953]	80 [3.150]	85 [3.346]	10 [0.394]	55 [2.165]	10 [0.394]	28 [1.102]	M4×0.7 Depth 5 [0.197]	55 [2.165]	61 [2.402]	24 [0.945]	35 [1.378]	12 [0.472]
25 [0.984]	91 [3.583]	19 [0.748]	72 [2.835]	30 [1.181]	50 [1.969]	50 [1.969]	55 [2.165]	60 [2.362]	65 [2.559]	70 [2.756]	75 [2.953]	80 [3.150]	85 [3.346]	90 [3.543]	10 [0.394]	66 [2.598]	9 [0.354]	34 [1.339]	M4×0.8 Depth 6 [0.236]	66 [2.598]	72 [2.835]	29 [1.142]	40 [1.575]	12 [0.472]

Bore Code	P ₁ Note	Q	S	Т	٧	W	Υ	Z
16 [0.630]	ϕ 4.5 [0.177] (Thru hole) Counterbore ϕ 8 [0.315] Depth 5.5 [0.217] (Both sides)	34 [1.339]	54 [2.126]	21 [0.827]	8 [0.315]		18.5 [0.728]	
20 [0.787]	ϕ 4.5 [0.177] (Thru hole) Counterbore ϕ 8 [0.315] Depth 5.5 [0.217] (Both sides)	44 [1.732]	62 [2.441]	25 [0.984]	10 [0.394]	8.2 [0.323]	20 [0.787]	6.8 [0.268]
25 [0.984]	ϕ 4.5 [0.177] (Thru hole) Counterbore ϕ 9 [0.354] Depth 6 [0.236] (Both sides)	56 [2.205]	73 [2.874]	30 [1.181]	12 [0.472]		22.5 [0.886]	

Note: The counterbore depth is measured from the upper surface of the body.


_	ode	Α	В	С	D					E					
Bore	oke					10	20	30	40	50	60	70	80	90	100
32 [1.260	21	118	30	88	35	55	60	65	70	75	80	85	90	95	100
32 [1.200	וי	[4.646]	[1.181]	[3.465]	[1.378]	[2.165]	[2.362]	[2.559]	[2.756]	[2.953]	[3.150]	[3.346]	[3.543]	[3.740]	[3.937]

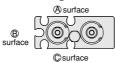
Note: The counterbore depth is measured from the upper surface of the body.

TWIN ROD CYLINDERS B SERIES

Sensor Switches

Order Codes

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location


Operating range: ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

■ Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

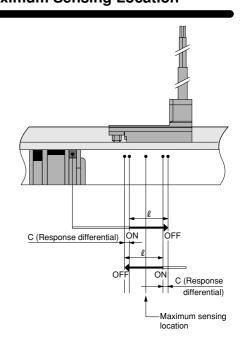
Sensor switch mounting surface

mm (in 1

Solid state type

						[]
Item	Bore size Mounting surface	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
Operating range : ()	A and C surface	2.5	~6 [0.098~0.2	236]	2.5~6.5 [0.098~0.256]	5~12 [0.197~0.472]
Operating range : ℓ	B surface	2.5~4 [0.098~0.157]	2~4.5 [0.0	79~0.177]	2.5~5.5 [0.098~0.217]	4~9 [0.157~0.354]
Response differential : C	_	1.0 [0.039] or less	1.2 [0.04	7] or less	1.5 [0.059] or less	2.0 [0.079] or less
Maximum sensing location Note	_			6 [0.236]		

Remark: The above table shows reference values.


Note: The maximum sensing location is the distance from the end of the switch opposite to the lead wire.

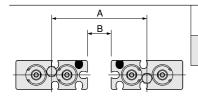
●Reed switch type

Theed Switt	сп туре				mm [in.]
Bore size	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
Operating range : ℓ	6~8.5 [0.2	36~0.335]	6~8 [0.236~0.315]	12~16.5 [0.472~0.650]	
Response differential : C		1.5 [0.05	9] or less		2.5 [0.098] or less
Maximum sensing location Note					

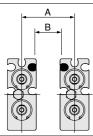
Remark: The above table shows reference values.

Note: The maximum sensing location is the distance from the end of the switch opposite to the lead wire.

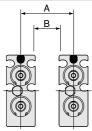
When Mounting Cylinders with Sensor Switches in Close Proximity


When mounting cylinders in close proximity,

Sensor switch

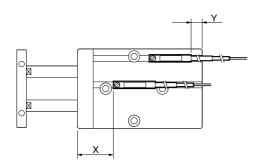

install the cylinder so that it should exceed the values in the table below.

mm [in.]

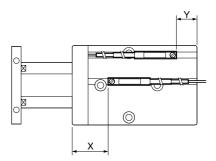

Status of mounting in close proximity	Code	Bore size	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
A	•	Solid state type	53 [2.087]	66 [2.598]	73 [2.874]	87 [3.425]	119 [4.685]
l B ⊳ l	Α	Reed switch type	48 [1.890]	60 [2.362]	68 [2.677]	81 [3.189]	109 [4.291]
	В	Solid state type	11 [0.433]	12 [0.472]	11 [0.433]	14 [0.551]	23 [0.906]
	В	Reed switch type		6 [0.236]		8 [0.315]	13 [0.512]

	Solid state type	47 [1.850]	59 [2.323]	65 [2.559]	77 [3.031]	107 [4.213]
Α	Reed switch type	42 [1.654]	54 [2.126]	62 [2.441]	73 [2.874]	96 [3.780]
В	Solid state type	5 [0.197] 3 [0.118] 4 [0.157] 11 [0				
	Reed switch type	0 [0]				

		Solid state type	28 [1.102]	33 [1.299]	36 [1.417]	44 [1.732]	65 [2.559]
	A	Reed switch type	22 [0.866]	27 [1.063]	30 [1.181]	37 [1.457]	53 [2.087]
Ī	_	Solid state type	11 [0.433]	12 [0.472]	11 [0.433]	14 [0.551]	25 [0.984]
	В	Reed switch type	5 [0.197]	6 [0.236]	5 [0.197]	7 [0.276]	13 [0.512]


	Solid state type	21 [0.827]	24 [0.945]	25 [0.984]	30 [1.181]	44 [1.732]			
	Α	Reed switch type	17 [0.669]	21 [0.827]	25 [0.984]	30 [1.181]	40 [1.575]		
	_	Solid state type	4 [0.157]	3 [0.118]	0	[0]	4 [0.157]		
	В	Reed switch type		0 [0]					

Remark: For mounting in configurations other than the above, consult us.


Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

■ When the lead wire is pulled from the head side.

■ When the lead wire of the head side detection sensor switch only is pulled from the rod side.

Solid state type

					111111 [111.]
Code Bore	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
Х	37.5 [1.476]	43.5 [1.713]	47.5 [1.870]	52.5 [2.067]	62 [2.441]
Υ	-3.5 [-0.138]	-2.5 [-0.098]	-1.5 [-0.059]	-2.5 [-0.098]	4 [0.157]

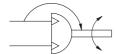
Reed switch type

• · · · · · · · · · · · · · · · · · · ·						
Code Bore	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	
Χ	33.5 [1.319]	39.5 [1.555]	43.5 [1.713]	48.5 [1.909]	58 [2.283]	
Υ	0.5 [0.020]	1.5 [0.059]	2.5 [0.098]	1.5 [0.059]	8 [0.315]	

Solid state type

					111111 [1111.]
Code Bore	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]
Х	37.5 [1.476]	43.5 [1.713]	47.5 [1.870]	52.5 [2.067]	62 [2.441]
Υ	6.5 [0.256]	7.5 [0.295]	8.5 [0.335]	7.5 [0.295]	14 [0.551]

Reed switch type


Cheed emilen type							
Code Bore	10 [0.394]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]		
Х	33.5 [1.319]	39.5 [1.555]	43.5 [1.713]	48.5 [1.909]	58 [2.283]		
Υ	2.5 [0.098]	3.5 [0.138]	4.5 [0.177]	3.5 [0.138]	10 [0.394]		

Double Acting Type

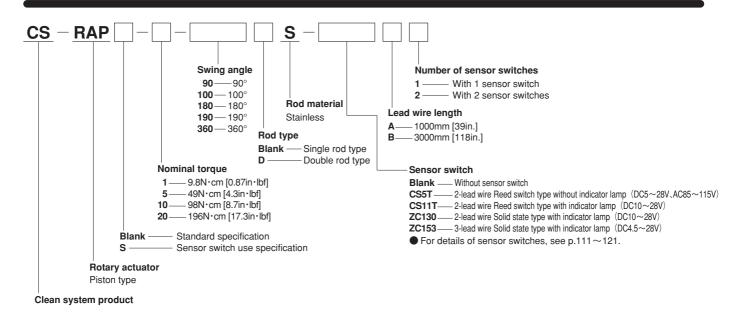
Symbol

KOGANEI

Specifications

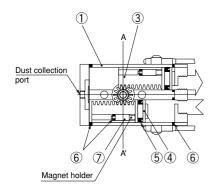
	Model						
Item	Woder	CS-RAP□1	CS-RAP□5	CS-RAP□10	CS-RAP □ 20		
Operating type]	Double acting piston type (R	ack and pinion construction	1)		
Effective torque Note	N·m [ft·lbf]	0.078 [0.058]	0.373 [0.275]	0.883 [0.651]	1.863 [1.374]		
	CS-RAP□-90		90)°			
Swing angle (Tolerance $^{+10^{\circ}}_{0}$)	CS-RAP□-100		10	0°			
	CS-RAP□-180		18	0°			
	CS-RAP□-190	190°					
	CS-RAP□-360	360°					
Media		Air					
Port size		M5×0.8		Rc1/8			
Rod diameter	mm [in.]	4 [0.157]	6 [0.236]	8 [0.315]	10 [0.394]		
Operating pressure range	MPa [psi.]	0.15~0.7	[22~102]	0.06~0.7	[9~102]		
Proof pressure	MPa [psi.]		1.03	[149]			
Operating temperature range	°C [°F]		0~50 [3	2~122]			
Allowable energy	J [in·lbf]	0.001 [0.009]	0.003 [0.027]	0.008 [0.071]	0.015 [0.133]		
Lubrication	Not required						
Cushion None							

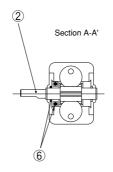
Note: Values are obtained when the air pressure is 0.49MPa [71psi.].


Mass

			g [oz.]	
		Additional mass		
Model	Main body mass	Double rod specification	With sensor switch specification Note	
CS-RAP1-90,100	101 [3.56]			
CS-RAP1-180,190	119 [4.20]	2 [0.07]		
CS-RAP1-360	166 [5.86]			
CS-RAP5-90,100	252 [8.89]			
CS-RAP5-180,190	300 [10.58]	4 [0.14]	With 1 sensor	
CS-RAP5-360	415 [14.64]		switch: 24 [0.85]	
CS-RAP10-90,100	346 [12.20]		With 2 sensor	
CS-RAP10-180,190	426 [15.03]	10 [0.35]	switches: 46 [1.62]	
CS-RAP10-360	584 [20.60]			
CS-RAP20-90,100	561 [19.79]			
CS-RAP20-180,190	675 [23.81]	16 [0.56]		
CS-RAP20-360	931 [32.84]			

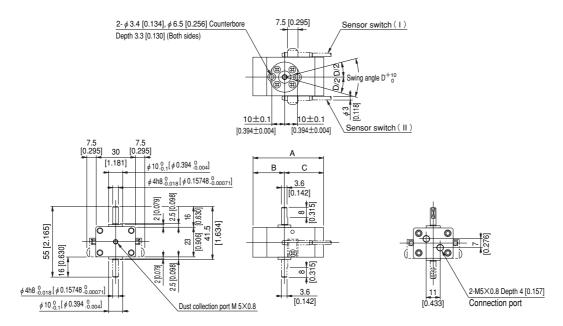
Calculation example: Mass of CS-RAP1-180 with double rod and 1 sensor switch; 119+2+24=145g~[5.11oz.] Note: The additional mass of the sensor switch is the mass of the sensor holder


Note: The additional mass of the sensor switch is the mass of the sensor holde and the sensor body only, and does not include the lead wire mass.


Order Codes

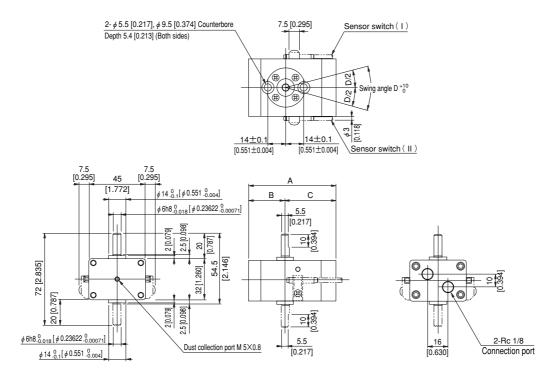
Inner Construction and Major Parts

Sensor switch use specification

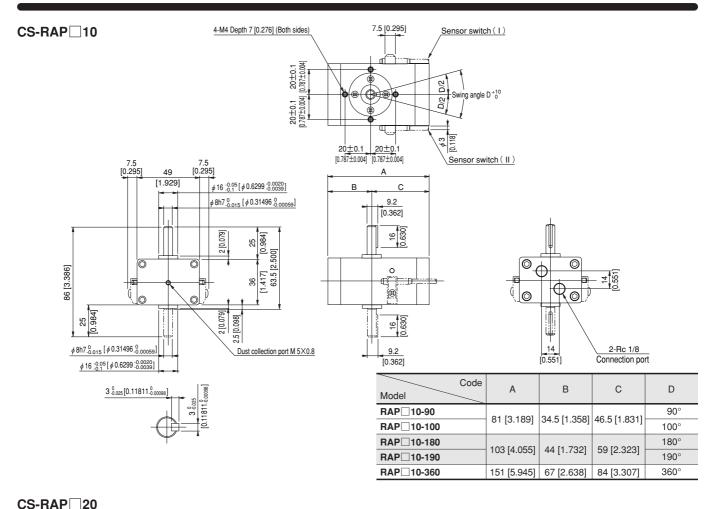

Major Parts and Materials

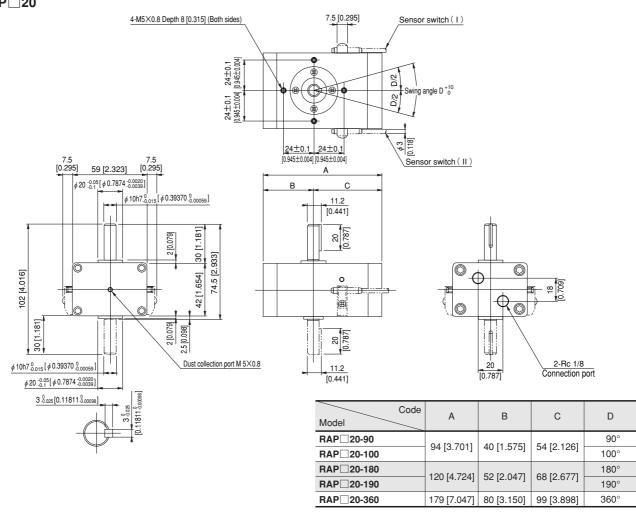
No.	Parts	Materials				
1	Main body	Aluminum (anodized)				
2	Rod pinion	Stainless steel (SUS304)				
3	Rack	Plastic				
4	Piston	Flastic				
(5)	Piston seal	Cumthatia rubbar (NDD)				
6	O-ring	Synthetic rubber (NBR)				
7	Magnet	Plastic magnet				

Seals


Item		O-ring		Piston seal
Model Q'ty	4	2	2	2
CS-RAP□1	IN 10	I.D φ 6× φ 1.2	I.D φ 9× φ 1.5	PPY-10
CS-RAP□5	IN 16	I.D φ 9× φ 1.5	I.D φ 14× φ 1.5	PPY-16
CS-RAP□10	IN 20	P8	I.D φ 19× φ 0.6	PPY-20
CS-RAP□20	I.D φ 25× φ 1.5	P10	I.D φ 24.6× φ 0.7	PPY-25

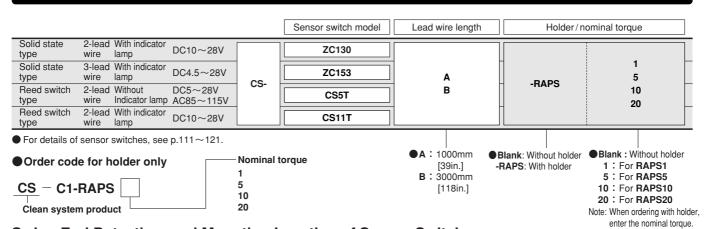
CS-RAP□1



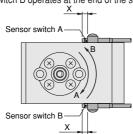

Code	A	В	С	D
RAP□1-90	EC [0 00E]	05 [0 004]	04 [4 000]	90°
RAP□1-100	56 [2.205]	25 [0.984]	31 [1.220]	100°
RAP□1-180	60 [0 677]	31[1.220]	37 [1.457]	180°
RAP□1-190	68 [2.677]			190°
RAP□1-360	96 [3.780]	45 [1.772]	51 [2.008]	360°

CS-RAP□5

Code	A	В	С	D
RAP□5-90	70 [0 750]	20 E [1 201]	20 E [4 EEE]	90°
RAP□5-100	70 [2.756]	30.5 [1.201]	39.5 [1.555]	100°
RAP□5-180	1000 01 00	35.5 [1.398]	50.5 [1.988]	180°
RAP□5-190	86 [3.386]			190°
RAP□5-360	124 [4.882]	55 [2.165]	69 [2.717]	360°



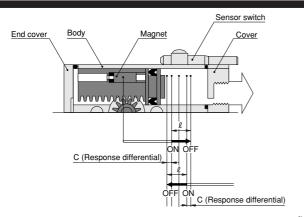
ROTARY ACTUATORS RAP SERIES


Sensor Switches

Order Codes

Swing End Detection and Mounting Location of Sensor Switch

When the sensor switch is mounted in the location shown in the diagram, the magnet comes to the maximum sensing location of the sensor switch at the end of the swing. At this time, the sensor switch A operates at the end of the swing in the A direction, and sensor switch B operates at the end of the swing in the B direction.

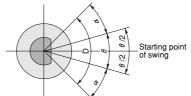


Notes: 1. Do not mount the sensor switch in the reverse direction.

When an external stopper, etc., limits the swing angle, note that there may be cases where the sensor switch does not operate within the above adjusting range.

Model	X: Maximum sensing location			
Model	ZC130, ZC153	CS5T	CS11T	
RAPS1	6.5 [0.256]	5.0 [0.197]	8.5 [0.335]	
RAPS5	7.0 [0.276]	5.5 [0.217]	9.0 [0.354]	
RAPS10	0.5.[0.050]	E 0 [0 107]	0 E [0 00E]	
RAPS20	6.5 [0.256]	5.0 [0.197] 8.5 [0.33		

Sensor Switch Operating Range and Response Differential

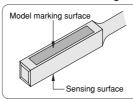


					mm [in.]
CS5T□		CS11T□		ZC1 🗆 🗆	
Operating range ℓ	Response differential C	Operating range &	Response differential C	Operating range &	Response differential C
4.7~10.8 [0.185~0.425]	1.4 [0.055] or less	6.8~9.5 [0.268~0.374]	1.4 [0.055] or less	1.5~4.7 [0.059~0.185]	0.3 [0.012] or less

Remark: The above table shows reference values.

Reference

• When use of an external stopper limits the swing angle, 2 sensor switches can be used up to the angle (α) shown below. The recommended type of the sensor switch is a solid state sensor switch for its short operating range.


- D : Swing angle
- θ : Range where sensor switch cannot detect
- α: Range where sensor switch can detect

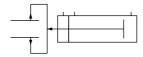
Model	Swing angle	θ Note	α
	90°		17°
	100°	56°	22°
RAPS1	180°	56	62°
	190°		67°
	360°	100°	130°
	90°		24°
	100°	42°	29°
RAPS5	180°	42	69°
	190°		74°
	360°	170°	95°
	90°		29°
	100°	100° 32°	
RAPS10	180°		70°
	190°	40°	75°
	360°	220°	70°
	90°		32°
RAPS20	100°	26°	37°
	180°		50°
	190°	80°	55°
	360°	250°	55°

Note: Two sensor switches may be ON at the same time when the angle adjustment is set to this value or below.

Remark: For the use of reed type sensor switches, or for swing starting points other than those listed above, consult us.

Caution when installing RAP with sensor switch

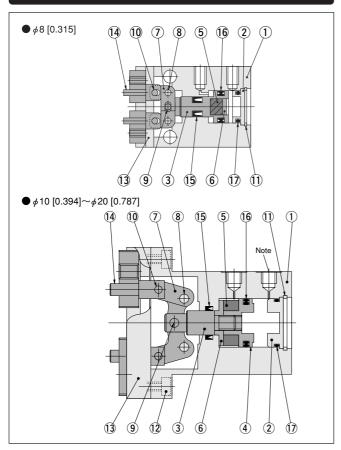
In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.



STEM AIR HANDS NHB SERIES PARALLEL TYPE

Linear Guide Specification Double Acting Type

Symbol

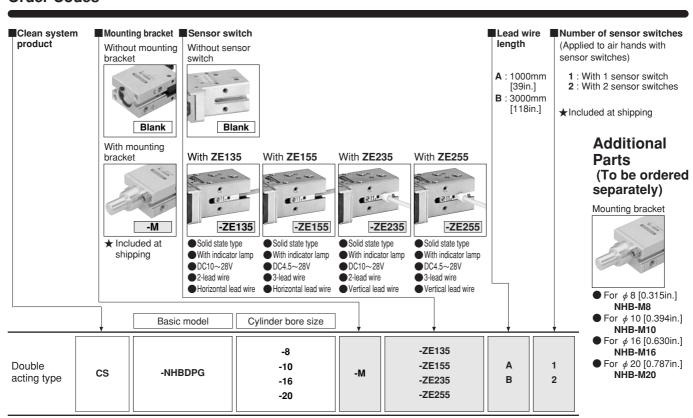


Specifications

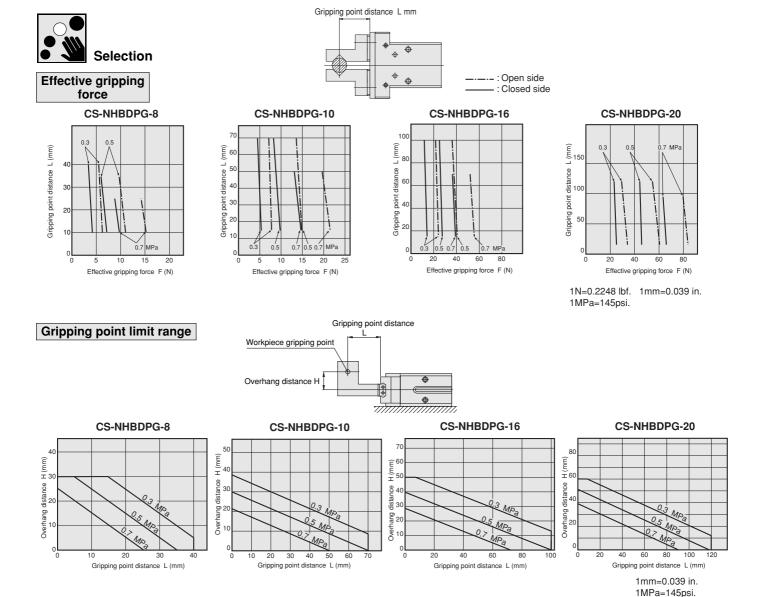
Item	Basic model	CS-NHBDPG-8	CS-NHBDPG-10	CS-NHBDPG-16	CS-NHBDPG-20
Cylinder bore size	mm [in.]	8 [0.315]	10 [0.394]	16 [0.630]	20 [0.787]
Operating type			Double a	cting type	
Media			ı	Air	
Operating pressure	range MPa [psi.]	0.22~0.7 [32~102]	0.2~0.7 [29~102]	0.12~0.7 [17~102]	0.1~0.7 [15~102]
Proof pressure	MPa [psi.]	1.05 [152]			
Operating temperature	range °C [°F]	0~60 [32~140]			
Maximum operating frequ	uency cycle/min	120			
Lubrication		Not required			
Effective gripping force	Closed side	5.8 [1.30]	9.4 [2.11]	26.4 [5.93]	45.0 [10.12]
(F)Note 1 N [lbf.]	Open side	9.9 [2.23]	14.7 [3.30]	39.2 [8.81]	59.8 [13.44]
Lever open/closed stroke mm [in.]		4 [0.157]	6.5 [0.256]	10 [0.394]	14 [0.551]
Repeatability	mm [in.]	±0.01 [±0.0004]			
Port size		M3×0.5		M5>	×0.8
MassNote 2	g [oz.]	24 [0.85] (29 [1.02])	80 [2.82] (91 [3.21])	159 [5.61] (178 [6.28])	329 [11.60] (355 [12.52])

Notes: 1. Values are obtained when gripping point distance is 30mm [1.18in.] under operating pressure 0.5 MPa [73psi.]. For details of the effective gripping force, see the graphs on p.106.
2. () mean the mass with the mounting bracket: -M.

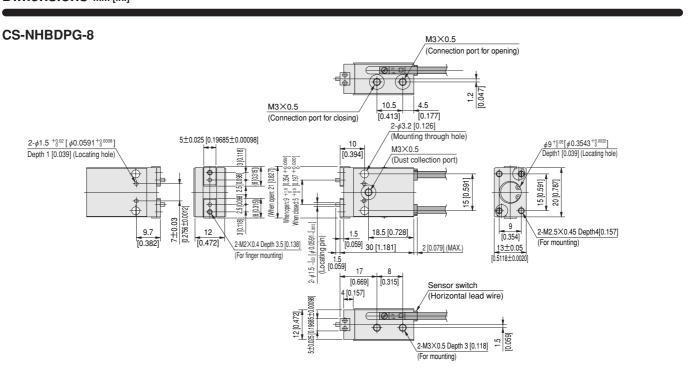
Inner Construction

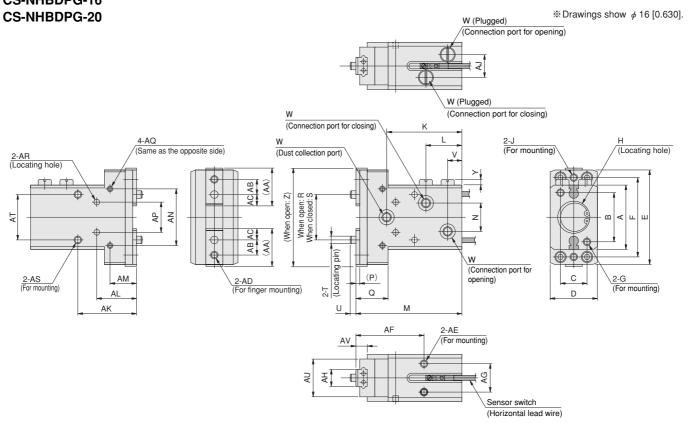


Note: The plug is attached to the extra connection port on the side surface. (Except $\,\phi$ 8 [0.315in.])


Major Parts and Materials

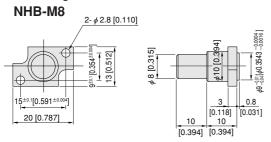
No.	Parts	Materials	Remarks
1	Body	Aluminum alloy	
2	Head cover	Aluminum alloy	
3	Piston rod	Stainless steel	
4	Piston	Aluminum alloy	Except ϕ 8 [0.315in.]
5	Magnet	Plastic magnet	
6	Magnet holder	Aluminum alloy	
7	Action lever	Steel	
8	Fulcrum pin	Steel	
9	Press fit pin	Steel	
10	Press fit pin	Steel	
11)	Internal snap ring	Steel	
12	Hexagon socket head bolt	Steel	
13	Bearing	Stainless steel	
14)	Knuckle	Stainless steel	
15)	Seal	Synthetic rubber (NBR)	
16	Seal	Synthetic rubber (NBR)	
17	O-ring	Synthetic rubber (NBR)	


Order Codes

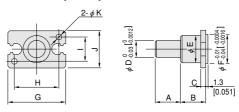

Handling Instructions and Precautions

Dimensions mm [in.]

CS-NHBDPG-10 CS-NHBDPG-20


Model Code	Α	В	С	D	Е	F	G	Н	J	K	L	М	N	Р
CS-NHBDPG-10	23	17	10	20±0.05	36	30	M3×0.5	φ 11 ^{+0.05} ₀ [φ 0.4331 ^{+0.0020} ₀]	M3×0.5	35	17	49	7	1.5
	[0.906]	[0.669]	[0.394]	[0.7874±0.0020]	[1.417]	[1.181]	Depth 6 [0.236]	Depth 1.5 [0.059]	Depth 4.5 [0.177]	[1.378]	[0.669]	[1.929]	[0.276]	[0.059]
CS-NHBDPG-16	34	26	14	25±0.05	50	42	M4×0.7	$\phi 17^{+0.05}_{0} [\phi 0.6693^{+0.0020}_{0}]$	M4×0.7	40	19	56	15	2
	[1.339]	[1.024]	[0.551]	[0.9843±0.0020]	[1.969]	[1.654]	Depth 7 [0.276]	Depth 1.5 [0.059]	Depth 5 [0.197]	[1.575]	[0.748]	[2.205]	[0.591]	[0.079]
CS-NHBDPG-20	45	35	16	32±0.05	62	54	M5×0.8	φ21 ^{+0.05} ₀ [φ0.8268 ^{+0.0020}]	M4×0.7	45	21	67	17	3
	[1.772]	[1.378]	[0.630]	[1.2598±0.0020]	[2.441]	[2.126]	Depth 9 [0.354]	Depth 1.5 [0.059]	Depth 7 [0.276]	[1.772]	[0.827]	[2.638]	[0.669]	[1.181]

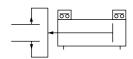
Q	R	S	Т	U	V	W	Υ	Z	AA	AB	AC	AD	AE	AF	AG
14	15.5 ^{+0.8} [0.610 ^{+0.031}]	9 ^{+0.5} [0.354 ^{+0.020}]	φ3-0.03 [φ0.1181-0.0012]	2 [0.079]	7.5 [0.295]	M3×0.5	2 [0.079]	37 [1.457]	14.7 [0.579]	5 [0.197]	4.5 [0.177]	M3×0.5 Depth 4 [0.157]	M3×0.5 Depth 5 [0.197]	29 [1.142]	12 [0.472]
17	22 ^{+1.8} [0.866 ^{+0.071}]	12 ^{+1.3} [0.472 ^{+0.051}]	φ 4 _{-0.03} [φ 0.1575 _{-0.0012}]	3 [0.118]	7.5 [0.295]	M5×0.8	3 [0.118]	52 [2.047]	20 [0.787]	8 [0.315]	6 [0.236]	M4×0.7 Depth 5 [0.197]	M4×0.7 Depth 6 [0.236]	36 [1.417]	15 [0.591]
23	30 ^{+2.9} [1.181 ^{+0.114}]	16 ^{+1.4} [0.630 ^{+0.055}]	φ 5 _{-0.03} [φ 0.1969 _{-0.0012}]	3 [0.118]	7.5 [0.295]	M5×0.8	3 [0.118]	64 [2.520]	24 [0.945]	8 [0.315]	8 [0.315]	M5×0.8 Depth 7 [0.276]	M5×0.8 Depth 8 [0.315]	43 [1.693]	18 [0.709]


AH	AJ	AK	AL	AM	AN	AP	AQ	AR	AS	AT	AU	AV
7±0.025	9	24	16	11	20	12±0.03	M3×0.5		M4 \times 0.7 Depth 6 [0.236],	17	17	6
[0.27559±0.00098]	[0.354]	[0.945]	[0.630]	[0.433]	[0.787]	[0.4724±0.0012]	Depth 5 [0.197]		Drilled hole diameter ϕ 3.4 [0.134] thru hole	[0.669]	[0.669]	[0.236]
9±0.025	12	31	21	14		16±0.03	M3×0.5	φ3 ^{+0.02} ₀ [φ0.1181 ^{+0.0008} ₀]	M4 \times 0.7 Depth 7 [0.276],	24	20	8
[0.35433±0.00098]	[0.472]	[1.220]	[0.827]	[0.551]		[0.6299±0.0012]	Depth 5 [0.197]	Depth 3 [0.118]	Drilled hole diameter ϕ 3.4 [0.134] thru hole	[0.945]	[0.787]	[0.315]
12±0.025	16	37	27.3	17		22±0.03	M4×0.7	φ4 ^{+0.02} ₀ [φ0.1575 ^{+0.0008} ₀]	M4 \times 0.8 Depth 8 [0.315],	30	27	10
[0.47244±0.00098]	[0.630]	[1.457]	[1.075]	[0.669]		[0.8661±0.0012]	Depth 6 [0.236]	Depth 3.5 [0.1378]	Drilled hole diameter ϕ 4.2 [0.165] thru hole	[1.181]	[1.063]	[0.394]

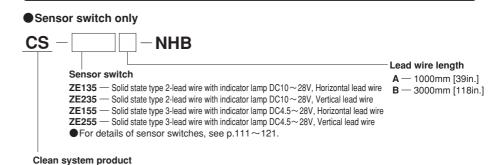
Options

● Mounting bracket: -M

NHB-M10, M16, M20



Model	Code	Α	В	С	D	Е	F	G	Н	- 1	J	K
NHB	-M10	15 [0.591]	15 [0.591]	3 [0.118]	10 [0.394]	11 [0.433]	11 [0.433]	23 [0.906]	17 [0.669]	10 [0.394]	16 [0.630]	3.4 [0.134]
NHB	-M16	15 [0.591]	15 [0.591]	3 [0.118]	10 [0.394]	16 [0.630]	17 [0.669]	34 [1.339]	26 [1.024]	14 [0.551]	22 [0.866]	4.5 [0.177]
NHB	-M20	15 [0.591]	15 [0.591]	3 [0.118]	10 [0.394]	18 [0.709]	21 [0.827]	45 [1.772]	35 [1.378]	16 [0.630]	26 [1.024]	5.5 [0.217]


AIR HANDS NHB SERIES LINEAR GUIDE SPECIFICATION

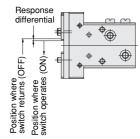
Sensor Switches

Symbol

Order Codes

mm [in.]

Sensor Switch Operating Range and Response Differential


Open/closed stroke differential (Open/closed angle differential)

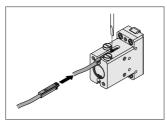
The stroke differential (angle differential) between the point where the lever on one side moves and turns the switch ON and the point where the switch is turned OFF as the lever travels in the opposite direction.

Operating position repeatability

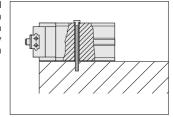
When the lever on one side moves in the same direction, operating position repeatability is defined as the range of the deviation of the position where the switch is turned ON or turned OFF.

Parallel type linear guide specification

Parallel type linear guide specification


Model	Open/closed stroke differential	Operating position repeatability		
(CS-)NHB□PG(L,Y)-8	0.5 [0.020]	0.2 [0.008]		
(CS-)NHB□PG(L,Y)-10	0.5 [0.020]	0.2 [0.008]		
(CS-)NHB□PG(L,Y)-16	0.8 [0.031]	0.2 [0.008]		
(CS-)NHB□PG(L,Y)-20	0.8 [0.031]	0.2 [0.008]		

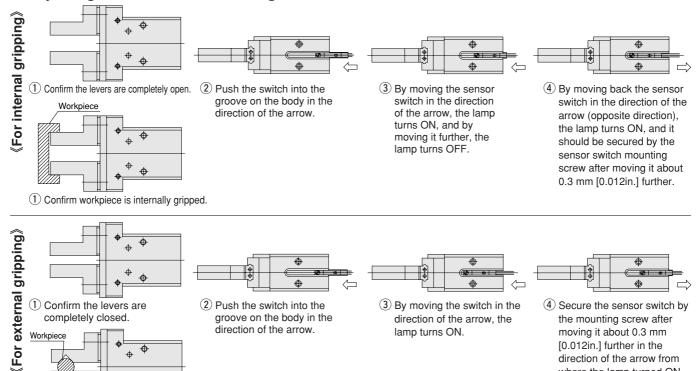
Remark: The above table shows reference values.


Precautions for Sensor Switch Mounting

Tighten the mounting screw after the sensor switch is inserted in the switch mounting groove in the direction of the arrow in the diagram and move to the proper location. Tightening torque of the mounting screw is $0.1 \sim 0.2 \text{N} \cdot \text{m} \ [0.9 \sim 1.8 \text{in} \cdot \text{lbf}]$.

Caution: Care must be exercised that the sensor switch cannot be inserted into the switch mounting groove from the diagram's top direction.

Caution: Care must be exercised that a sensor switch cannot be mounted when the body is installed by using thru holes, as shown in the diagram to the right.



[0.012in.] further in the

in 3.

direction of the arrow from where the lamp turned ON

Adjusting Sensor Switch Mounting Position (Mount the sensor switch so that the surface showing the model marking faces up.)

1 Confirm workpiece is externally gripped.

Ф

Ф

Remark: ① shows the desired location for the switch to turn ON. Install and adjust it in accordance with $\bigcirc \sim 4$ above.

ZC130 □, ZC153 □

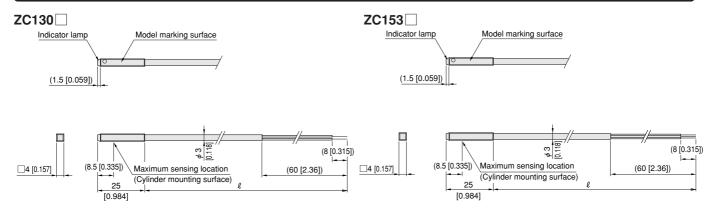
Products compliant

ZC153A

Solid State Type Sensor Switch

Applicable cylinders


lacktriangle Multi mount cylinders lacktriangle Pen cylinders lacktriangle TDA ϕ 6


Specifications

Item Model	ZC130 □	ZC153□			
Wiring type	2-lead wire	3-lead wire			
Voltage	_	DC4.5~28V			
Load voltage	DC10~28V	DC4.5~28V			
Load current	4~50mA	100mA MAX.			
Consumption current	_	10mA MAX. (DC24V)			
Internal voltage drop Note 1	3.5V MAX.	0.5V MAX. (At 50mA load current)			
Leakage current	1mA MAX. (DC24V)	50μA MAX. (DC24V)			
Response time	1ms MAX.				
Insulation resistance	100M Ω MIN. (At DC500V Megger, between case and lead wire terminal)				
Dielectric strength	AC500V (50/60Hz) in 1 minute (Be	tween case and lead wire terminal)			
Shock resistance Note 2	294.2m/s ² {30G} (N	on-repeated shock)			
Vibration resistance Note 2	88.3m/s² {9G} (Total amplitude	e 1.5mm [0.059in.], 10~55Hz)			
Environmental protection	IP67 (IEC standard), JIS	C0920 (Water-proof type)			
Operating indicator	When ON: Red LEI	D indicator lights up			
Lead wire Note 3	PVC 0.2SQ $ imes$ 2-lead $ imes \ell$	PVC 0.2SQ $ imes$ 3-lead $ imes \ell$			
Ambient temperature	0~60°C [3	32~140°F]			
Storage temperature range	−10~70°C	[14~158°F]			
Mass	20g [0.71oz.] (For lead wire length A: 1000mm [39in.])				

- Notes: 1. The internal voltage drop depends on load current.
 - 2. Measured by Koganei test standard.
 - 3. Lead wire length ℓ : A; 1000mm [39in.], B; 3000mm [118in.]

Internal Circuit

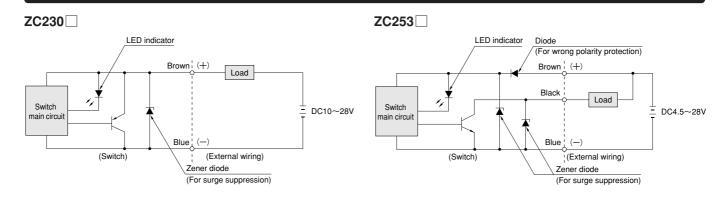
ZC230 □, **ZC253** □

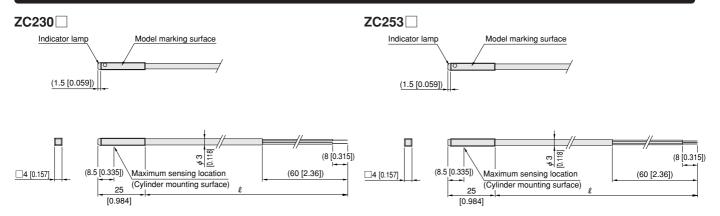
Solid State Type Sensor Switch

Applicable cylinders

Pen cylinders

Specifications


Item Model	ZC230□	ZC253□			
Wiring type	2-lead wire	3-lead wire			
Voltage	_	DC4.5~28V			
Load voltage	DC10~28V	DC4.5~28V			
Load current	4~50mA	100mA MAX.			
Consumption current	_	10mA MAX. (DC24V)			
Internal voltage drop Note 1	3.5V MAX.	0.5V MAX. (At 50mA load current)			
Leakage current	1mA MAX. (DC24V)	50μA MAX. (DC24V)			
Response time	1ms MAX.				
Insulation resistance	100M Ω MIN. (At DC500V Megger, between case and lead wire terminal)				
Dielectric strength	AC500V (50/60Hz) in 1 minute (Be	tween case and lead wire terminal)			
Shock resistance Note 2	294.2m/s ² {30G} (N	lon-repeated shock)			
Vibration resistance Note 2	88.3m/s² {9G} (Total amplitude	e 1.5mm [0.059in.], 10~55Hz)			
Environmental protection	IP67 (IEC standard), JIS	C0920 (Water-proof type)			
Operating indicator	When ON: Red LEI	D indicator lights up			
Lead wire Note 3	PVC 0.2SQ $ imes$ 2-lead $ imes \ell$	PVC 0.2SQ×3-lead×ℓ			
Ambient temperature	0~60°C [3	32~140°F]			
Storage temperature range	-10~70°C	[14~158°F]			
Mass	20g [0.71oz.] (For lead wire length A: 1000mm [39in.])				


Notes: 1. The internal voltage drop depends on load current.

2. Measured by Koganei test standard.

3. Lead wire length ℓ : A; 1000mm [39in.], B; 3000m [118in.]

Internal Circuit

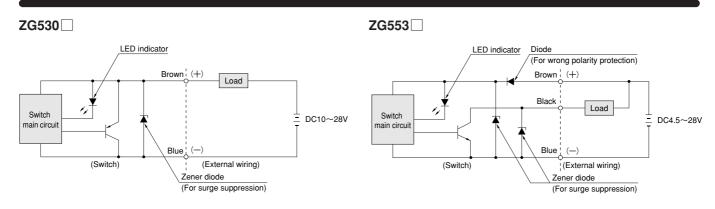
ZG530 □, **ZG553**

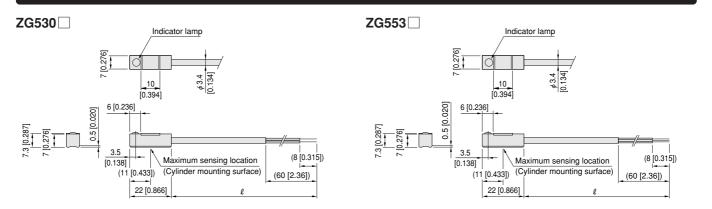
Products compliant

Solid State Type Sensor Switch

Applicable cylinders

Slim cylinders


Specifications


Item Model	ZG530 □	ZG553□			
Wiring type	2-lead wire	3-lead wire			
Voltage	_	DC4.5~28V			
Load voltage	DC10~28V	DC4.5~28V			
Load current	4~50mA	100mA MAX.			
Consumption current	_	10mA MAX. (DC24V)			
Internal voltage drop Note 1	4.5V MAX.	0.5V MAX. (At 50mA load current)			
Leakage current	1mA MAX. (DC24V at 25°C [77°F])	50μA MAX. (DC24V)			
Response time	1ms MAX.				
Insulation resistance	100M Ω MIN. (At DC500V Megger, between case and lead wire terminal)				
Dielectric strength	AC500V (50/60Hz) in 1 minute (Be	tween case and lead wire terminal)			
Shock resistance Note 2	294.2m/s ² {30G} (N	on-repeated shock)			
Vibration resistance Note 2	88.3m/s² {9G} (Total amplitude	e 1.5mm [0.059in.], 10~55Hz)			
Environmental protection	IP67 (IEC standard), JIS	C0920 (Water-proof type)			
Operating indicator	When ON: Red LE	D indicator lights up			
Lead wire Note 3	PVC 0.2SQ $ imes$ 2-lead $ imes \ell$	PVC 0.2SQ $ imes$ 3-lead $ imes \ell$			
Ambient temperature	0~60°C [3	32~140°F]			
Storage temperature range	-10~70°C	[14~158°F]			
Mass	20g [0.71oz.] (For lead wire length A: 1000mm [39in.])				

- Notes: 1. The internal voltage drop depends on load current.

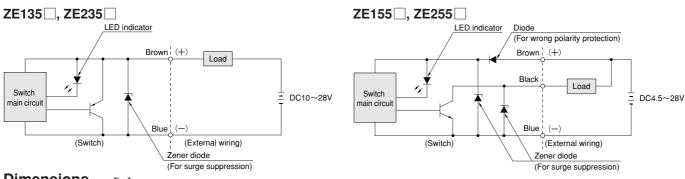
 - 2. Measured by Koganei test standard. 3. Lead wire length ℓ : A; 1000mm [39in.], B; 3000m [118in.]

Internal Circuit

ZE135 □, 155 □, 235 □, 255

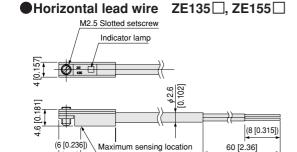
Solid State Type Sensor Switch

Applicable cylinders

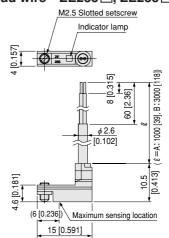

- Mini bit cylinders Jig cylinders C series Mini guide sliders Jig cylinders with guides Twin rod cylinders B series
- Air Hands NHB

Specifications

Item Model	ZE135□	ZE155□	ZE235□	ZE255□				
Wiring type	2-lead wire	3-lead wire	2-lead wire	3-lead wire				
Lead wire direction	Horiz	ontal	Ver	tical				
Voltage	_	DC4.5~28V	_	DC4.5~28V				
Load voltage	DC10~28V	DC4.5~28V	DC10~28V	DC4.5~28V				
Load current	4~20mA (at 25°C [77°F], and 10mA at 60°C [140°F])	50mA MAX.	4~20mA (at 25°C [77°F], and 10mA at 60°C [140°F])	50mA MAX.				
Consumption current	_	8mA MAX. (DC24V)	_	8mA MAX. (DC24V)				
Internal voltage drop Note 1	4V MAX.	0.5V MAX. (10V or less at 20mA)	4V MAX.	0.5V MAX. (10V or less at 20mA)				
Leakage current	0.7mA MAX. (DC24V, 25°C [77°F])	50μA MAX. (DC24V)	0.7mA MAX. (DC24V, 25°C [77°F])	50μA MAX. (DC24V)				
Response time		1ms MAX.						
Insulation resistance	100	0 Μ Ω MIN. (At DC500V Megger, b	etween case and lead wire termin	nal)				
Dielectric strength	A	C500V (50/60Hz) in 1 minute (Be	etween case and lead wire termina	al)				
Shock resistance Note 2		294.2m/s ² {30G} (N	lon-repeated shock)					
Vibration resistance Note 2		Total amplitude 1.5mm [0.059	in.], 10~55Hz (88.3m/s² {9G})					
Environmental protection		IEC IP67, JIS C092	20 (Water-proof type)					
Operating indicator		When ON: Red LE	D indicator lights up					
Lead wire Note 3	PCCV 0.2SQ \times 2-lead (Brown and blue) \times ℓ	PCCV 0.15SQ $ imes$ 3-lead (Brown, blue, and black) $ imes$ ℓ	PCCV 0.2SQ $ imes$ 2-lead (Brown and blue) $ imes$ ℓ	PCCV 0.15SQ $ imes$ 3-lead (Brown, blue, and black) $ imes$ ℓ				
Ambient temperature		0~60°C [3	32~140°F]					
Storage temperature range		-10~70°C	[14~158°F]					
Mass	15g [0.53oz.] (For lead	d wire length A: 1000mm [39in.]),	35g [1.23oz.] (For lead wire lengt	th B: 3000mm [118in.])				


- Notes: 1. The internal voltage drop depends on load current.
 - 2. Measured by Koganei test standard.
 - 3. Lead wire length ℓ : A; 1000mm [39in.], B; 3000m [118in.]

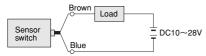
Internal Circuit


Dimensions mm [in.]

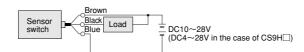
15.5 [0.610]

(ℓ =A:1000 [39], B:3000 [118])

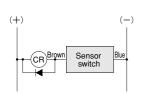
Vertical lead wire ZE235 □, ZE255 □

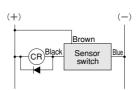


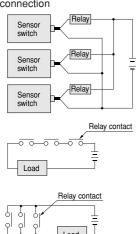
Points of Wiring Solid State Type Sensor Switches

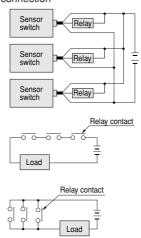

ZC130 □, ZC230 □, ZC330 □ ZC630 □, ZE135 □, ZE235 □ ZG530 □, ZD136C

ZC153 , ZC253 , ZC353 , ZC653 ZE155 □, ZE255 □, ZG553 □, CS9H □

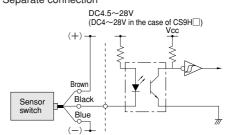

Basic connection


Basic connection

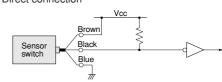

Connection with relays


Connection with relays

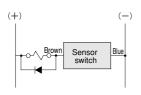
AND (series) connection and OR (parallel) connection

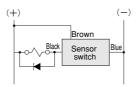


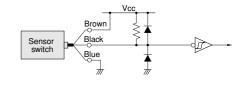
AND (series) connection and OR (parallel) connection



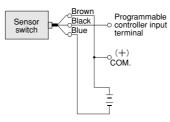
Connection with TTL


Separate connection




Direct connection

●Connection with solenoid valve ■Connection with solenoid valve ■Connection to C-MOS



controller

Programmable controller input terminal Blue (+)СОМ

Connection with programmable • Connection with programmable controller

- Cautions: 1. Connect wires according to the colors of the lead wires. If the connection is incorrect, it could cause an erratic operation and/or damage.
 - 2. Do not connect the 2-lead wire solid state type sensor switch to TTL or C-MOS.
 - 3. A surge suppression protection diode is recommended for the inductive load of electromagnetic relays, etc.
 - 4. Avoid series (AND) connection because the voltage of the
 - circuit will drop in proportion to the number of sensor switches.

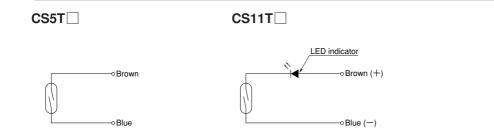
 5. When using parallel (OR) connection, the same sensor output lines (e.g. the same black lead wires) can be connected together, but the current leakage will increase by the number of sensor switches. Therefore, be aware of load return abnormalities.
- 6. Because the sensor switches are a magnetically sensitive type, avoid using them in locations subject to strong external magnetic fields or bringing them too close to power lines or other large electric currents are present.
- Do not use magnetic material for the mounting part, because it will cause erratic operations.
- 7. Do not pull or bend the lead wires excessively.
- 8. Avoid using sensor switches in strong chemical or gas environments
- 9. Consult us for use in ambient atmospheres subject to water or

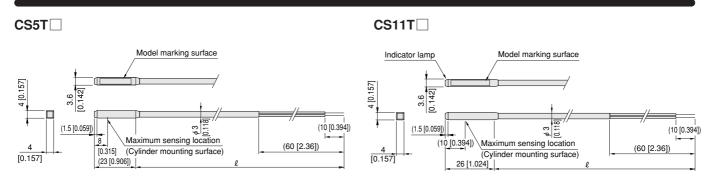
CS5T□, CS11T

Reed Switch Type Sensor Switch

Applicable cylinders

●Multi mount cylinders ●TDA ∮ 6


Specifications


Item Model	CS5T□	CS11T□				
Wiring type	2-lea	d wire				
Load voltage	DC5~28V, AC85~115V (r.m.s.)	DC10~28V				
Load current	DC0.1~40mA, AC2~25mA	DC5~40mA				
Internal voltage drop Note 1	0.1V MAX. (At 40mA load current)	2.1V MAX. (At 40mA load current)				
Leakage current	0mA					
Response time	1ms	MAX.				
Insulation resistance	$100 M\Omega$ MIN. (At DC500V Megger, between case and lead wire terminal)					
Dielectric strength	AC1500V (50/60Hz) in 1 minute (Between case and lead wire terminal)	AC1000V (50/60Hz) in 1 minute (Between case and lead wire terminal)				
Shock resistance Note 2	294.2m/s² {30G} (N	Non-repeated shock)				
Vibration resistance Note 2	88.3m/s ² {9G} (Total amplitude 1.5mm [0.059in.],	10~55Hz), Resonance frequency 2750±250Hz				
Environmental protection	IP67 (IEC standard), JIS	C0920 (Water-proof type)				
Operating indicator	-	When ON: Red LED indicator lights up				
Lead wire Note 3	PVC 0.2SQ	×2-lead×ℓ				
Ambient temperature	0~60°C [3	32~140°F]				
Storage temperature range	−10~70°C	[14~158°F]				
Contact protection	Required (See contact	et protection on p.121.)				
Mass	20g [0.71oz.] (For lead wire	e length A: 1000mm [39in.])				

- Notes: 1. The internal voltage drop depends on load current.

 - 2. Measured by Koganei test standard.
 3. Lead wire length ℓ : A; 1000mm [39in.], B; 3000mm [118in.]

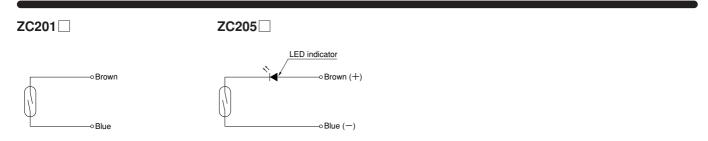
Internal Circuit

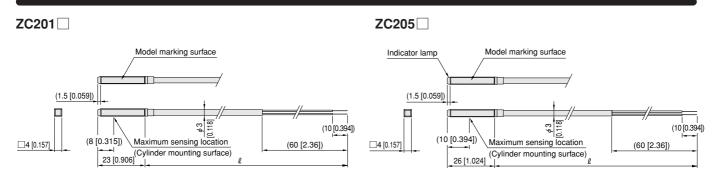
ZC201 □, **ZC205**

Reed Switch Type Sensor Switch

Applicable cylinders

Pen cylinders


Specifications


Item Model	ZC201□	ZC205□					
Wiring type	2-lear	d wire					
Load voltage	DC5~28V, AC85~115V (r.m.s.)	DC10~28V					
Load current	DC0.1~40mA, AC2~25mA	DC5~40mA					
Internal voltage drop ^{Note 1}	0.1V MAX. (At 40mA load current)	2.1V MAX. (At 40mA load current)Note1					
Leakage current	On	0mA					
Response time	1ms	MAX.					
Insulation resistance	$100 M\Omega$ MIN. (At DC500V Megger, between case and lead wire terminal)						
Dielectric strength	AC1500V (50/60Hz) in 1 minute (Between case and lead wire terminal)	AC1000V (50/60Hz) in 1 minute (Between case and lead wire terminal)					
Shock resistanceNote 2	294.2m/s² {30G} (N	lon-repeated shock)					
Vibration resistanceNote 2	88.3m/s ² {9G} (Total amplitude 1.5mm [0.059in.],	10∼55Hz), Resonance frequency 2750±250Hz					
Environmental protection	IP67 (IEC standard), JIS	C0920 (Water-proof type)					
Operating indicator	-	When ON: Red LED indicator lights up					
Lead wire ^{Note 3}	PVC 0.2SQ2	×2-lead×ℓ					
Ambient temperature	0~60°C [S	32~140°F]					
Storage temperature range	−10~70°C	[14~158°F]					
Contact protection	Required (See contact	et protection on p.121.)					
Mass	20g [0.71oz.] (For lead wire	e length A: 1000mm [39in.])					

Notes: 1. The internal voltage drop depends on load current.

- 2. Measured by Koganei test standard.
 3. Lead wire length ℓ : A; 1000mm [39in.], B; 3000mm [118in.]

Internal Circuit

$CS3M \square$, $4M \square$, 5M

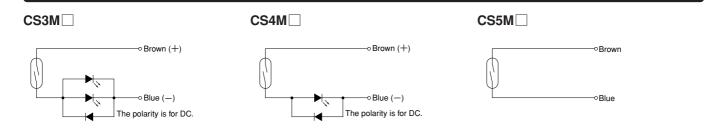
Reed Switch Type Sensor Switch

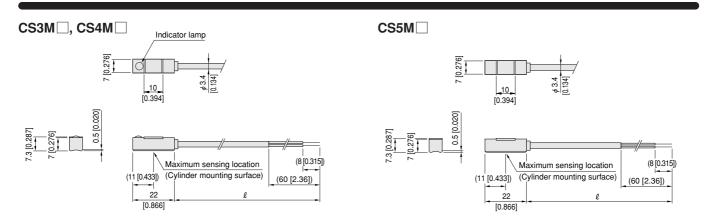
Applicable cylinders

Slim cylinders

Specifications

Item Model	CS	3M□	CS	4M□	C	S5M□		
Wiring type			2-lea	d wire				
Load voltage	DC10~30V	AC85~230V(r.m.s.)	DC10~30V	AC85~115V(r.m.s.)	DC3~30V	AC85~115V(r.m.s.)		
Load current	10~50mA ^{Note 1}	10~50mA(AC85~115V) ^{Note 1} 5~15mA(AC115~230V) ^{Note 1}	5~25mA ^{Note 1}	5~20mA ^{Note 1}	0.1~60mA	2~25mA		
Internal voltage drop ^{Note 2}	2.5V MAX. (At 5	0mA load current)	2.2V MAX. (At 2	5mA load current)	0.2V MAX. (At	60mA load current)		
Leakage current		0mA						
Response time		1ms MAX.						
Insulation resistance		100M Ω MIN. (At DC500V Megger, between case and lead wire terminal)						
Dielectric strength	AC2200V (50/60Hz) in 1 minute (I	Between case and lead wire terminal)	AC1500V (5	0/60Hz) in 1 minute (Be	tween case and lea	ad wire terminal)		
Shock resistanceNote 3			294.2m/s ² {30G} (N	lon-repeated shock)				
Vibration resistanceNote 3	88.3	m/s² {9G} (Total amplitud	de 1.5mm [0.059in.],	10~55Hz), Resonance	e frequency 5000±	:400Hz		
Operating indicator		When ON: Red LED	indicator lights up			_		
Lead wire ^{Note4}			PVC 0.2SQ	×2-lead×ℓ				
Ambient temperature			0~60°C [3	32~140°F]				
Storage temperature range			−10~70°C	[14~158°F]				
Contact protection		Required (See contact protection on p.121.)						
Mass		20g [0	71oz.] (For lead wire	e length A: 1000mm [39	in.])			


- Notes: 1. Ta=37°C [98.6°F]


 2. The internal voltage drop depends on load current.

 3. Measured by Koganei test standard.

 4. Lead wire length \(\ell \) : A; 1000mm [39in.], B; 3000mm [118in.]

Internal Circuit

ZE101 □, 102 □, 201 □, 202

Reed Switch Type Sensor Switch

ZE101A ∠E102A ■

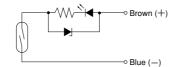
Applicable cylinders

● Jig cylinders C series ● Mini guide sliders ● Jig cylinders with guides ● Twin rod cylinders B series

Specifications

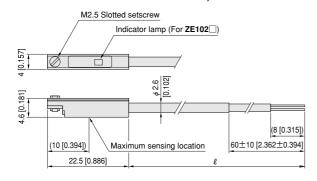
Model				
Item Model	ZE101 🗌	ZE102	ZE201□	ZE202□
Wiring type	2-lead wire			
Lead wire direction	Horizontal		Vertical	
Load voltage	DC5~28V, AC85~115V	DC10~28V, AC85~115V	DC5~28V, AC85~115V	DC10~28V, AC85~115V
Load current	DC40mA MAX., AC20mA MAX.	DC5~40mA, AC5~20mA	DC40mA MAX., AC20mA MAX.	DC5~40mA, AC5~20mA
Internal voltage drop ^{Note 1}	0.1V MAX. (At 40mA load current)	3.0V MAX.	0.1V MAX. (At 40mA load current)	3.0V MAX.
Leakage current	0mA			
Response time	1ms MAX.			
Insulation resistance	100MΩ MIN. (At DC500V Megger, between case and lead wire terminal)			
Dielectric strength	AC1500V (50/60Hz) in 1 minute (Between case and lead wire terminal)			
Shock resistance ^{Note 2}	294m/s² {30G} (Non-repeated shock)			
Vibration resistanceNote 2	Total amplitude 1.5mm [0.059in.], 10~55Hz 88.3m/s² {9G}, Resonance frequency 2750±250Hz			
Environmental protection	IEC IP67, JIS C0920 (Water-proof type)			
Operating indicator	None	When ON: Red LED indicator lights up	None	When ON: Red LED indicator lights up
Lead wire ^{Note 3}	PCCV 0.2SQ×2-lead (Brown and blue)×ℓ			
Ambient temperature	0∼60°C [32∼140°F]			
Storage temperature range	−10~70°C [14~158°F]			
Contact protection	Required (See contact protection on p.121.)			
Mass	15g [0.53oz.] (For lead wire length A: 1000mm [39in.]), 35g [1.23oz.] (For lead wire length B: 3000mm [118in.])			

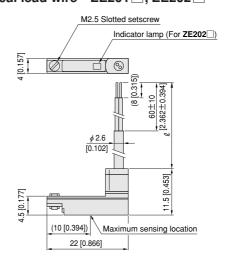
- Notes: 1. The internal voltage drop depends on load current.


 - 2. Measured by Koganei test standard.
 3. Lead wire length ℓ : A; 1000mm [39in.], B; 3000mm [118in.]

Internal Circuit

ZE101 □, **ZE201** □


ZE102□, **ZE202**□



Dimensions mm [in.]

●Horizontal lead wire ZE101 ☐, ZE102 ☐

● Vertical lead wire ZE201 , ZE202

CS2F, 3F, 4F, 5F

Reed Switch Type Sensor Switch

Applicable cylinders

Slim cylinders Note

Note: Not including Slim block cylinder ϕ 16

Specifications

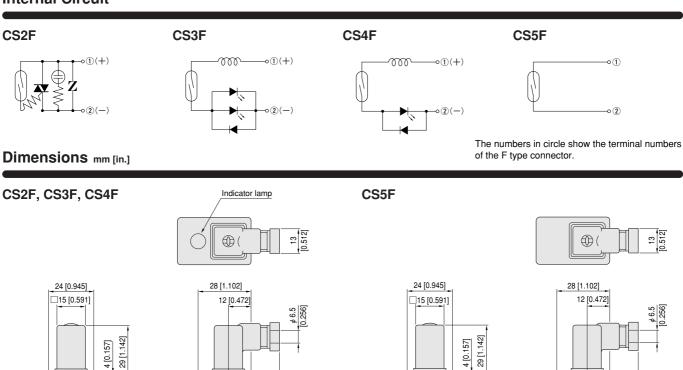
Item Model	CS2F	CS3F	CS4F	CS5F	
Wiring type		2-lead wire			
Load voltage	AC85~230V (r.m.s)	DC5~30V	DC5~30V	DC3~30V	
Load current	2~200mA	10~46mA ^{Note 1}	5~25mA ^{Note 1}	0.1~80mA	
Internal voltage drop	0.1V MAX. (At 200mA load current)	3V MAX. (At 46mA load current) Note 2	2.8V MAX. (At 25mA load current) Note 2	0.1V MAX. (At 80mA load current)	
Leakage current	1mA MAX. (AC100V) 2mA MAX. (AC200V)	0mA			
Response time	2ms MAX.	1.2ms MAX.			
Insulation resistance	100MΩ MIN. (At DC500V Megger, between case and lead wire terminal)				
Dielectric strength	AC500V (50/60Hz) in 1 minute (Between case and lead wire terminal)				
Shock resistance Note 3	294.2m/s² {30G} (Non-repeated shock)				
Vibration resistance Note 3	88.3m/s² {9G} (Total amplitude 1.5mm [0.059in.], 10~55Hz), Resonance frequency 5000±400Hz				
Environmental protection		-	_		
Operating indicator	When ON: Red neon lamp turns off	When ON: Red LE	D indicator lights up	-	
Method of wiring	With DIN connector (Cabtyre outer diameter ϕ 6.5 MAX.,Wire ϕ 1.25SQ MAX.)				
Ambient temperature	0∼60°C [32∼140°F]				
Storage temperature range	−10~70°C [14~158°F]				
Contact protection	Not required	Required (See contact protection on p.121.)			
Mass	40g [1.41oz.]				

- Notes: 1. Ta=37°C [98.6°F)
 - 2. The internal voltage drop depends on load current.
 - 3. Measured by Koganei test standard.

19 [0.748]

Maximum sensing location

7 [0.276]


R10 [0.394]

39 [1.535]

(16 [0.630])

(15 [0.591])

Internal Circuit

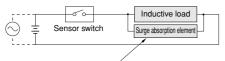
748]

19 [0.7

7 [0.276]

/R10 [0.394]

(15 [0.591])


39 [1.535]

Maximum sensing location (16 [0.630])

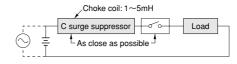
Contact Protection for Reed Switch Type Sensor Switches

In order to use the reed switch type sensor switches in a stable condition, take the following contact protection measures.

When connecting inductive load (electromagnetic relay, etc.)

For DC··· Diode, CR, etc.

For AC··· CR, etc.


Diode: Forward current should be more than the circuit current.

Reverse direction voltage should be inverse voltage that is 10 times or more of the circuit voltage.

CR: C=0.01 \sim 0.1 μ F R=1 \sim 4k Ω

When capacity surge is generated.

(When lead wire length exceeds 10m [3.28ft.].)

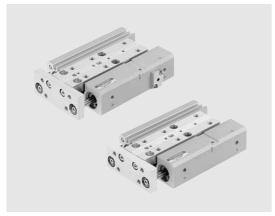
EQUIPMENT WITH LOW PARTICLE GENERATION SPECIFICATION

■ Koganei takes orders for the manufacture of products that reduce particle generation to a minimum, in response to customer requests.

Products with a proven track record are shown below.

For specifications (number of particles), delivery, prices, and other details, consult us.

Multi Sliders



Note: The photo shows standard equipment.

(Order Code Examples)

MS 6 $ imes$	Stroke	- 2W
MS 10 $ imes$	Stroke	- 2W
MS 16 $ imes$	Stroke	- 2W
MS 20 $ imes$	Stroke	- 2W

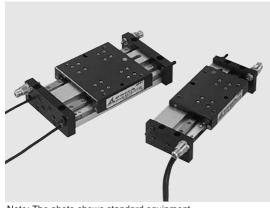
Z Sliders

Note: The photo shows standard equipment.

(Order Code Examples)

		_	
ZS 6	×	Stroke	- 11W
ZS 10	×	Stroke	- 11W
ZS 16	×	Stroke	- 11W
ZS 20	×	Stroke	- 11W
ZS 25	×	Stroke	- 11W

Rod Sliders



Note: The photo shows standard equipment.

(Order Code Examples)

	-	
ARS 6 $ imes$	Stroke	- 8W
ARS 10 $ imes$	Stroke	- 8W
ARS 16 $ imes$	Stroke	- 8W
ARS 20 $ imes$	Stroke	- 8W
ARS 25 $ imes$	Stroke	- 8W

■GT Slide Tables

Note: The photo shows standard equipment.

(Order Code Examples)

AGTB 10
$$\times$$
 Stroke - 21W

AGTB 16 \times Stroke - 21W

AGTB 25 \times Stroke - 21W

AGTC 10 \times Stroke - 21W

AGTC 16 \times Stroke - 21W

■ Magnet Type Rodless Cylinders MRC, MRG Series

Note: The photo shows standard equipment.

(Order Code Examples)

MRCH (MRGH) 6 × Stroke - 1002W

MRCH (MRGH) 10 × Stroke - 1002W

MRCH (MRGH) 16 × Stroke - 1002W

MRCH (MRGH) 20 × Stroke - 1002W

MRCH (MRGH) 25 × Stroke - 1002W

MRCH (MRGH) 32 × Stroke - 1002W

MRCH (MRGH) 40 × Stroke - 1002W

■ Magnet Type Rodless Cylinders MRS Series

Note: The photo shows standard equipment.

(Order Code Examples)

MRS 10 \times Stroke - 1014W

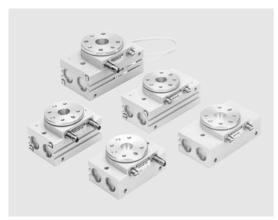
MRS 16 \times Stroke - 1014W

MRS 20 \times Stroke - 1014W

MRS 25 \times Stroke - 1014W

■ Magnet Type Rodless Cylinders MRW Series

Note: The photo shows standard equipment.


(Order Code Examples)

MRW 16 × Stroke - 1014W

MRW 25 × Stroke - 1014W

MRW 40 × Stroke - 1014W

■ Rotary Actuators RAT Series

Note: The photo shows standard equipment.

(Order Code Examples)

RAT 5 × Swing angle - 10W

RAT 10 × Swing angle - 10W

RAT 30 × Swing angle - 10W

■Cylinder Joints

Note: The photo shows standard equipment.

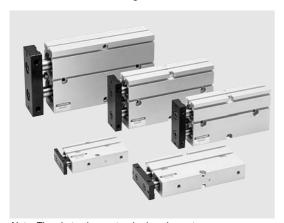
(Order Code Examples)

CJ- 3×0.5 - 48W

CJ- 4×0.7 - 47W

CJ- 5×0.8 - 46W

CJ- 6×1 - 45W


CJS (CJL) - $8 \times 1 - 41W$

CJS (CJL) - 10 imes 1.25 - 42W

CJL $-12 \times 1.25 - 116W$

CJL $-14 \times 1.5 - 39W$

■Twin Rod Cylinders B Series

Note: The photo shows standard equipment.

(Order Code Examples)

ATBDA 10 × Stroke - 14W

ATBDA 16 × Stroke - 14W

ATBDA 20 × Stroke - 14W

ATBDA 25 × Stroke - 14W

ATBDA 32 × Stroke - 14W

Limited Warranty

KOGANEI CORP. warrants its products to be free from defects in material and workmanship subject to the following provisions.

Warranty Period

The warranty period is 180 days from the date of delivery.

Koganei Responsibility

If a defect in material or workmanship is found during the warranty period, KOGANEI CORP. will replace any part proved defective under normal use free of charge and will provide the service necessary to replace such part.

Limitations

This warranty is in lieu of all other warranties, expressed or implied, and is limited to the original cost of the product and shall not include any transportation fee, the cost of installation or any liability for direct, indirect or consequential damage or delay resulting from the defects.

- KOGANEI CORP. shall in no way be liable or responsible for injuries or damage to persons or property arising out of the use or operation of the manufacturer's product.
- This warranty shall be void if the engineered safety devices are removed, made inoperative or not periodically checked for proper functioning.
- Any operation beyond the rated capacity, any improper use or application, or any improper installation of the product, or any substitution upon it with parts not furnished or approved by KOGANEI CORP., shall void this warranty.
- This warranty covers only such items supplied by KOGANEI CORP. The products of other manufacturers are covered only by such warranties made by those original manufacturers, even though such items may have been included as the components.

The specifications are subject to change without notice.

URL http://www.koganei.co.jp

E-mail: overseas@koganei.co.jp

KOGANEI CORPORATION

OVERSEAS DEPARTMENT

3-11-28, Midori-cho, Koganei City, Tokyo 184-8533, Japan Tel: 042-383-7271 Fax: 042-383-7276

MICHIGAN REPRESENTATIVE OFFICE

5070 East N Ave., Kalamazoo, Michigan, 49048, U.S.A. Tel: 269-388-8769 Fax: 269-388-8771

SHANGHAI KOGANEI INTERNATIONAL TRADING CORPORATION

Room 2606, 2607 Tongda Venture Building No. 1, Lane 600, Tianshan Road, Shanghai, 200051, China Tel: 021-6145-7313 Fax: 021-6145-7323

